Регулируемый блок питания 0 15в. Регулируемый блок питания своими руками

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания . У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:


Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:


Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

– выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

– можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

– очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

– защита от перегрузки и неправильного подключения

– на блоке питания путем короткого замыкания (КЗ) “крокодилов” устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):


Цифры в кружочках – это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
- 1 и 2 к трансформатору.
- 3 (+) и 4 (-) выход постоянного тока.
- 5, 10 и 12 на P1.
- 6, 11 и 13 на P2.
- 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост . Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано “NC”, что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А


Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!


Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство – это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:


Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)


протравил


отмыл тонер


просверлил отверстия:


Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:


А вот так плата выглядит уже с полным монтажом:


Подготавливаем место под платку в нашем корпусе:


Приделываем к корпусу радиатор:


Не забываем про кулер, который будет охлаждать наши транзисторы:


Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?


Описание работы, печатку и список радиоэлементов я взял в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке


Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема - блок питания. От чего только не пытаются запитывать начинающие мастера свои устройства - батарейки, китайские адаптеры, зарядки от мобильных телефонов... И часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается точностью поддержания выходного напряжения - тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями. Печатная плата в формате Lay - .


После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.


Корпус делаем из того, что под рукой. Классический вариант - металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.


В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.


Кулер можно оставить - лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.


Для передней панели не поскупился и купил пластиковую коробочку - в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.


Амперметр берём стрелочный - чтоб хорошо были видны броски тока, а вольтметр поставил цировой - так удобнее и красивее!


После сборки регулируемого блока питания проверяем его в работе - он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В - при верхнем. Подключив нагрузку пол ампера - смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.



Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.


Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

Блок питания 0-30В 10А

Этот довольно мощный блок питания выдаёт стабилизированное напряжение от 1 до 30 вольт при токе до 10 ампер.
В отличие от других БП, описанных на этом сайте, он обладает, кроме вольтметра, функцией измерения тока, что может быть применено, например, в гальванике.
На передней панели находятся (сверху вниз):
- зелёный светодиод включения БП;
- красный светодиод срабатывания защиты по току;
- головка измерения напряжения (верхняя шкала) и тока (нижняя шкала);
- слева от значка- переключатель индикации напряжения- тока;
- справа от значка- кнопка сброса защиты по току;
- регулятор выходного напряжения;
- клеммы подключения нагрузки.

Трансформатор должен иметь мощность от 300 Вт с напряжением на вторичке от 23 вольт переменки с выводом от средины вторички. Вывод нужен для реализации схемы защиты по току (внизу). На транзисторе Т1 собран ключ защиты. Падение напряжения на резисторе R2 приводит к открытию этого транзистора, срабатывает тиристорная оптопара АОУ103, срабатывает реле, контакты которого разрывают нагрузку на выходе БП и зажигают красный светодиод. После срабатывания защиты лучше сбросить переменником напряжение и кнопкой ПУСК вернуть блок в работу. Сам стабилизатор собран на стабилизаторе DA2 и двух мощных транзисторах VT3 и VT4, работающих в параллель.

Тут я привёл распальцовку:) кое каких активных элементов, чтобы вам не пришлось рыться в справочниках.
Не забудьте, на корпусе транзисторов 2N3055 находится коллектор, поэтому они должны быть изолированы от радиатора слюдяной или керамической прокладкой, смазанной кремнеорганической смазкой для теплопроводности.

Передняя панель с обратной стороны распаяна без каких либо сюрпризов. Схема с подстроечными резисторами для калибровки измеряемого тока и напряжения смонтирована прямо на выводах измерительной головки.

Вид на правую стенку изнутри.
Ближе к углу крепится реле. Типа реле не знаю, рабочее напряжение на обмотке 12 вольт постоянки, сопротивление обмотки 123 ом, ток 84 мА. Нормальнозамкнутые контакты коммутируют нагрузку, нормальноразомкнутые на сигнализацию срабатывания защиты (красный светодиод).
На переднем плане силовые транзисторы на медном радиаторе через керамические прокладки. Медь применена как отличный теплопроводящий материал, уступающий в этом отношении лишь серебру. Медный радиатор передаёт тепло дальше на дюралевый радиатор. Под транзисторами токовыравнивающие резисторы R9 и R10.
Под реле находится балластный резистор, падение напряжения на котором измерительная головка работает в режиме измерения тока. Конкретных цифр не буду приводить, всё зависит от того, какую головку найдёте. Скажу лишь как этот резистор можно изготовить. Во первых, сопротивление его по вашим рассчётам будет довольно мало, а во- вторых, его сопротивление должно быть довольно точным. Поэтому находим нихром. Не важно какого диаметра, ведь можно сыграть количеством проводов. Главное, нужно измерить его диаметр и по таблицам, которые я приводил , определяете его погонное сопротивление. Этого уже достаточно, чтобы по закону Ома высчитать длину и количество проволочек. Далее собираем проволочки в пучёк, засовываем в медные трубочки подходящего диаметра и сплющиваем их с соблюдением необходимой длины проволочек. Всё, балластник готов. Его можно припаивать к контактам.

Левая и задняя стенка.
Вверху левой стенки крепится печатная плата, на которой и находится вся мелочёвка. Схема печатной платы и её вид далее.
К самому радиатору левой стенки крепится силовая диодная сборка BB36931. Она работает до 80 вольт при токе до 10 ампер. Для качественного теплового контакта садим на кремнеорганическую мазь. Я использую для этого виксинт. Эта сборка хороша тем, что изолирующих прокладок не требуется.
На задней панели находятся предохранители и основной конденсатор. Конденсатор на всякий случай зашунтирован резистором.

Слева схема печатной платы со стороны навесных элементов. Справа с обратной стороны. Далее- уже виды вживую.

Расположение элементов внутреннего устройства блока питания не произвольно. Все они расположены таким образом, чтобы при сборке всех стенок вместе, они не мешали друг другу, а каждый выступ входил в соответствующее углубление. Что и видно на следующем фото.
Ну и, наконец, задняя стенка снаружи. Не мучайте себя напрасно, ведь зачастую при переноске шнурок болтается и мешает. Сделайте кронштейны для намотки провода и подберите его длину для наиболее удобной намотки. Не берите пример с заводских изделий. Ведь их делают не для людей, а для продажи. А вы всё же делаете для себя, любимого:)
К тому же на этих кронштейнах блок может работать лёжа на спине.