Значение микроскопа в жизни человека. Краткая история развития биологии

Все хорошо знают, что биология — это наука о жизни. В настоящее время она представляет совокупность наук о живой природе. Биология изучает все проявления жизни: строение, функции, развитие и происхождение живых организмов, их взаимоотношения в природных сообществах со средой обитания и с другими живыми организмами.
С тех пор как человек стал осознавать свое отличие от животного мира, он начал изучать окружающий его мир. Сначала от этого зависела его жизнь. Первобытным людям необходимо было знать, какие живые организмы можно употреблять в пищу, использовать в качестве лекарств, для изготовления одежды и жилищ, а какие из них ядовиты или опасны.
С развитием цивилизации человек смог позволить себе такую роскошь, как занятие наукой в познавательных целях.
Исследования культуры древних народов показали, что они имели обширные знания о растениях, животных и широко их применяли в повседневной жизни.?

Современная биология — комплексная наука, для которой характерно взаимопроникновение идей и методов различных биологических дисциплин, а также других наук — прежде всего физики, химии и математики.

Основные направления развития современной биологии. В настоящее время условно можно выделить три направления в биологии.
Во-первых, это классическая биология. Ее представляют учёные-натуралисты, изучающие многообразие живой природы. Они объективно наблюдают и анализируют все, что происходит в живой природе, изучают живые организмы и классифицируют их. Неправильно думать, что в классической биологии все открытия уже сделаны. Во второй половине XX в. не только описано много новых видов, но и открыты крупные таксоны, вплоть до царств (Погонофоры) и даже надцарств (Архебактерии, или Археи). Эти открытия заставили ученых по-новому взглянуть на всю историю развития живой природы, Для настоящих ученых-натуралистов природа — это самоценность. Каждый уголок нашей планеты для них уникален. Именно поэтому они всегда среди тех, кто остро чувствует опасность для окружающей нас природы и активно выступает в ее защиту.
Второе направление — это эволюционная биология. В XIX в, автор теории естественного отбора Чарльз Дарвин начинал как обычный натуралист: он коллекционировал, наблюдал, описывал, путешествовал, раскрывая тайны живой природы. Однако основным результатом его работы, сделавшим его известным ученым, стала теория, объясняющая органическое разнообразие.

В настоящее время изучение эволюции живых организмов активно продолжается. Синтез генетики и эволюционной теории привел к созданию так называемой синтетической теории эволюции. Но и сейчас еще есть много нерешенных вопросов, ответы на которые ищут ученые-эволюционисты.

Созданная в начале XX в. нашим выдающимся биологом Александром Ивановичем Опариным первая научная теория происхождения жизни была чисто теоретической. В настоящее время активно ведутся экспериментальные исследования данной проблемы и благодаря применению передовых физико-химических методов уже сделаны важные открытия и можно ожидать новых интересных результатов.
Новые открытия позволили дополнить теорию антропогенеза. Но переход от животного мира к человеку и сейчас еще остается одной из самых больших загадок биологии.
Третье направление — физико-химическая биология, исследующая строение живых объектов при помощи современных физических и химических методов. Это быстро развивающееся направление биологии, важное как в теоретическом, так и в практическом отношении. Можно с уверенностью говорить, что в физико-химической биологии нас ждут новые открытия, которые позволят решить многие проблемы, стоящие перед человечеством,

Развитие биологии как науки. Современная биология уходит корнями в древность и связана с развитием цивилизации в странах Средиземноморья. Нам известны имена многих выдающихся ученых, внесших вклад в развитие биологии. Назовем лишь некоторых из них.

Гиппократ (460 — ок. 370 до н. э.) дал первое относительно подробное описание строения человека и животных, указал на роль среды и наследственности в возникновении болезней. Его считают основоположником медицины.
Аристотель (384—322 до н. э.) делил окружающий мир на четыре царства: неодушевленный мир земли, воды и воздуха; мир растений; мир животных и мир человека. Он описал многих животных, положил начало систематике. Б написанных им четырех биологических трактатах содержались практически все известные к тому времени сведения о животных. Заслуги Аристотеля настолько велики, что его считают основоположником зоологии.
Теофраст (372—287 до н. э.) изучал растения. Им описано более 500 видов растений, даны сведения о строении и размножении многих из них, введены в употребление многие ботанические термины. Его считают основоположником ботаники.
Гай Плиний Старший (23—79) собрал известные к тому времени сведения о живых организмах и написал 37 томов энциклопедии «Естественная история». Почти до средневековья эта энциклопедия была главным источником знаний о природе.

Клавдий Гален в своих научных исследованиях широко использовал вскрытия млекопитающих. Он первым сделал сравнительно-

анатомическое описание человека и обезьяны. Изучал центральную и периферическую нервную систему. Историки науки считают его последним великим биологом древности.
В средние века господствующей идеологией была религия. Подобно другим наукам, биология в этот период еще не выделилась в самостоятельную область и существовала в общем русле религиозно-философских взглядов. И хотя накопление знаний о живых организмах продолжалось, о биологии как науке в тот период можно говорить лишь условно.
Эпоха Возрождения является переходной от культуры средних веков к культуре нового времени. Коренные социально-экономические преобразования того времени сопровождались новыми открытиями в науке.
Самый известный ученый этой эпохи Леонардо да Винчи (1452— 1519) внес определенный вклад и в развитие биологии.

Он изучал полет птиц, описал многие растения, способы соединения костей в суставах, деятельность сердца и зрительную функцию глаза, сходство костей человека и животных.

Во второй половине XV в. естественнонаучные знания начинают быстро развиваться. Этому способствовали географические открытия, позволившие существенно расширить сведения о животных и растениях. Быстрое накопление научных знаний о живых организмах
вело к разделению биологии на отдельные науки.
В XVI—XVII вв. стали стремительно развиваться ботаника и зоология.
Изобретение микроскопа (начало XVII в.) позволило изучать микроскопическое строение растений и животных. Были открыты невидимые для невооруженного глаза микроскопически малые живые организмы — бактерии и простейшие.
Большой вклад в развитие биологии внес Карл Линней, предложивший систему классификации животных и растений.
Карл Максимович Бэр (1792—1876) в своих работах сформулировал основные положения теории гомологичных органов и закона зародышевого сходства, заложившие научные основы эмбриологии.

В 1808 г. в работе «Философия зоологии» Жан Батист Ламарк поставил вопрос о причинах и механизмах эволюционных преобразований и изложил первую по времени теорию эволюции.

Огромную роль в развитии биологии сыграла клеточная теория, которая научно подтвердила единство живого мира и послужила одной из предпосылок возникновения теории эволюции Чарлза Дарвина. Авторами клеточной теории считают зоолога Теодора Шванна (1818—1882) и ботаника Маттиаса Якоба Шлейдена (1804—1881).

На основе многочисленных наблюдений Ч. Дарвин опубликовал в 1859 г. свой основной труд «О происхождении видов путем естественного отбора или Сохранении благоприятствуемых пород в борьбе за жизнь». В нём он сформулировал основные положения теории эволюции, предложил механизмы эволюции и пути эволюционных преобразований организмов.

XX век начался с переоткрытия законов Грегора Менделя, что ознаменовало собой начало развития генетики как науки.
В 40—50-е годы XX в. в биологии стали широко использоваться идеи и методы физики, химии, математики, кибернетики и других наук, а в качестве объектов исследования — микроорганизмы. В результате возникли и стали бурно развиваться как самостоятельные науки биофизика, биохимия, молекулярная биология, радиационная биология, бионика и др. Исследования в космосе способствовали зарождению и развитию космической биологии.

В XX в. появилось направление прикладных исследований — биотехнология. Это направление, несомненно, будет стремительно развиваться и в XXI в. Более подробно об этом направлении развития биологии вы узнаете при изучении главы «Основы селекции и биотехнологии».

В настоящее время биологические знания используются во всех сферах человеческой деятельности: в промышленности и сельском хозяйстве, медицине и энергетике.
Чрезвычайно важное значение имеют экологические исследования. Мы, наконец, стали осознавать, что хрупкое равновесие, существующее на нашей маленькой планете, легко разрушить. Перед человечеством встала грандиозная задача — сохранение биосферы с целью поддержания условий существования и развития цивилизации. Без биологических знаний и специальных исследований решить ее невозможно. Таким образом, в настоящее время биология стала реальной производительной силой и рациональной научной основой отношений между человеком и природой.

Микроскопом называется уникальный прибор, призванный увеличивать микроизображения и измерять размеры объектов или структурные образования, наблюдаемые через объектив. Эта разработка удивительна, а значение изобретения микроскопа чрезвычайно велико, ведь без него не существовало бы некоторых направлений современной науки. И отсюда поподробнее.

Микроскоп - родственное телескопу устройство, которое применяется для совершенно других целей. С помощью него удается рассмотреть структуру объектов, которые невидимы глазом. Он позволяет определять морфологические параметры микрообразований, а также оценивать их объемное расположение. Потому даже сложно представить, какое значение имело изобретение микроскопа, и как его появление повлияло на развитие науки.

История микроскопа и оптики

Сегодня сложно ответить, кто первым изобрел микроскоп. Вероятно, этот вопрос будет также широко обсуждаться, как и создание арбалета. Однако, в отличие от оружия, изобретение микроскопа действительно произошло в Европе. А кем именно, пока неизвестно. Вероятность того, что первооткрывателем устройства стал Ханс Янсен, голландский мастер по производству очков, достаточно высока. Его сыном, Захарием Янсеном, в 1590 году было сделано заявление, что он вместе с отцом сконструировал микроскоп.

Но уже в 1609 году появился и еще один механизм, который создал Галилео Галилей. Он назвал его occhiolino и презентовал публике Национальной академии деи Линчеи. Доказательством того, что в тот период уже мог использоваться микроскоп, является знак на печати папы Урбана III. Считается, что он представляет собой модификацию изображения, полученного путем микроскопирования. Световой микроскоп (составной) Галилео Галилея состоял из одной выпуклой и одной вогнутой линзы.

Совершенствование и внедрение в практику

Уже через 10 лет после изобретения Галилея Корнелиус Дреббель создает составной микроскоп, имеющий две выпуклые линзы. А позже, то есть уже к концу Кристиан Гюйгенс разработал двухлинзовую систему окуляров. Они производятся и сейчас, хотя им не хватает широты обзора. Но, что важнее, при помощи такого микроскопа в 1665 году было проведено исследование среза пробкового дуба, где ученый увидел так называемые соты. Результатом эксперимента стало введение понятия "клетка".

Другой отец микроскопа - Антони ван Левенгук - лишь переизобрел его, но сумел привлечь к прибору внимание биологов. И после этого стало понятно, какое значение имело изобретение микроскопа для науки, ведь это позволило развиваться микробиологии. Вероятно, упомянутый прибор существенно ускорил развитие и естественных наук, ведь пока человек не увидел микробов, он верил, что болезни зарождаются от нечистоплотности. А в науке царствовали понятия алхимии и виталистические теории существования живого и самозарождения жизни.

Микроскоп Левенгука

Изобретение микроскопа является уникальным событием в науке Средневековья, потому как благодаря устройству удалось найти множество новых предметов для научного обсуждения. Более того, множество теорий разрушилось благодаря микроскопированию. И в этом большая заслуга Антони ван Левенгука. Он смог усовершенствовать микроскоп так, чтобы он позволял детально увидеть клетки. И если рассматривать вопрос в этом контексте, то Левенгук действительно является отцом микроскопа такого типа.

Структура прибора

Сам световой представлял собой пластинку с линзой, способной многократно увеличивать рассматриваемые объекты. Эта пластинка с линзой имела штатив. Посредством него она монтировалась на горизонтальный стол. Направляя линзу на свет и располагая между нею и пламенем свечи исследуемый материал, можно было разглядеть Причем первым материалом, который Антони ван Левенгук исследовал, был зубной налет. В нем ученый увидел множество существ, назвать которые пока не мог.

Уникальность микроскопа Левенгука поражает. Имеющиеся тогда составные модели не давали высокого качества изображения. Более того, наличие двух линз только усиливало дефекты. Потому потребовалось более 150 лет, пока составные микроскопы, изначально разработанные Галилеем и Дреббелем, начали давать такое же качество изображения, как устройство Левенгука. Сам же Антони ван Левенгук все равно не считается отцом микроскопа, но по праву является признанным мастером микроскопирования нативных материалов и клеток.

Изобретение и совершенствование линз

Само понятие линзы существовало уже в Древнем Риме и Греции. Например, в Греции при помощи выпуклых стекол удавалось разжигать огонь. А в Риме давно заметили свойства стеклянных сосудов, наполненных водой. Они позволяли увеличивать изображения, хотя и не во много раз. Дальнейшее развитие линз неизвестно, хотя очевидно, что прогресс на месте стоять не мог.

Известно, что в 16 веке в Венеции вошло в практику применение очков. Подтверждением этого являются факты о наличии станков для шлифовки стекла, что позволяло получать линзы. Также имелись чертежи оптических приборов, представляющих собой зеркала и линзы. Авторство данных работ принадлежит Леонардо да Винчи. Но еще раньше люди работали с увеличительными стеклами: еще в 1268 году Роджер Бэкон выдвинул идею создания подзорной трубы. Позже она была реализована.

Очевидно, что авторство линзы никому не принадлежало. Но это наблюдалось до того момента, пока оптикой не занялся Карл Фридрих Цейс. В 1847 году он приступил к производству микроскопов. Затем его компания стала лидером в разработке оптических стекол. Она существует до сегодняшнего дня, оставаясь главной в отрасли. С ней сотрудничают все компании, которые занимаются производством фото- и видеокамер, оптических прицелов, дальномеров, телескопов и прочих устройств.

Совершенствование микроскопии

История изобретения микроскопа поражает при ее детальном изучении. Но не менее интересной является и история дальнейшего совершенствования микроскопии. Начали появляться новые а научная мысль, порождающая их, погружалась все глубже. Теперь целью ученого было не только изучение микробов, но и рассмотрение более мелких составляющих. Оными являются молекулы и атомы. Уже в 19 веке их удавалось исследовать посредством рентгеноструктурного анализа. Но наука требовала большего.

Итак, уже в 1863 году исследователем Генри Клифтоном Сорби для исследования метеоритов был разработан поляризационный микроскоп. А в 1863 году Эрнстом Аббе была разработана теория микроскопа. Она была успешно перенята на производстве Карла Цейса. Его компания за счет этого развилась до признанного лидера отрасли оптических приборов.

Но вскоре наступил 1931 год - время создания электронного микроскопа. Он стал новым видом аппарата, позволяющим видеть намного больше, чем световой. В нем для просвечивания применялись не фотоны и не поляризованный свет, а электроны - частицы куда более мелкие, нежели самые простые ионы. Именно изобретение электронного микроскопа позволило развиваться гистологии. Теперь ученые обрели полную уверенность, что их суждения о клетке и ее органеллах действительно правильные. Впрочем, лишь в 1986 году создателю электронного микроскопа Эрнсту Руска была присуждена Нобелевская премия. Более того, уже в 1938 году Джеймс Хиллер строит просвечивающий электронный микроскоп.

Новейшие виды микроскопов

Наука после успехов многих ученых развивалась все быстрее. А потому целью, продиктованной новыми реалиями, стала необходимость разработки высокочувствительного микроскопа. И уже в 1936 году Эрвином Мюллером выпускается полевой эмиссионный прибор. А в 1951 году производится еще одно устройство - полевой ионный микроскоп. Его важность чрезвычайна, потому как он впервые позволил ученым видеть атомы. А вдобавок к этому в 1955 году Ежи Номарский разрабатывает теоретические основы дифференциальной интерференционно-контрастной микроскопии.

Совершенствование новейших микроскопов

Изобретение микроскопа еще не является успехом, потому как заставить ионы или фотоны проходить через биологические среды, а потом рассматривать полученное изображение, в принципе, нетрудно. Вот только вопрос повышения качества микроскопии был действительно важным. И после этих умозаключений ученые создали пролетный масс-анализатор, который получил название сканирующего ионного микроскопа.

Это устройство позволяло сканировать отдельно взятый атом и получать данные о трехмерной структуре молекулы. Вместе с этот метод позволил значительно ускорить процесс идентификации многих веществ, встречающихся в природе. А уже в 1981 году был введен сканирующий туннельный микроскоп, а в 1986 - атомно-силовой. 1988 - это год изобретения микроскопа сканирующего электрохимического туннельного типа. А самым последним и наиболее полезным является силовой зонд Кельвина. Он был разработан в 1991 году.

Оценка глобального значения изобретения микроскопа

Начиная с 1665 года, когда Левенгук занялся обработкой стекла и производством микроскопов, отрасль развивалась и усложнялась. И задаваясь вопросом о том, какое значение имело изобретение микроскопа, стоит рассмотреть основные достижения микроскопирования. Итак, этот метод позволил рассмотреть клетку, что послужило очередным толчком развития биологии. Затем прибор позволил разглядеть органеллы клетки, что дало возможность сформировать закономерности клеточной структуры.

Затем микроскоп позволил увидеть молекулу и атом, а позднее ученые смогли сканировать их поверхность. Более того, посредством микроскопа можно увидеть даже электронные облака атомов. Поскольку электроны движутся со скоростью света вокруг ядра, то рассмотреть эту частицу совершенно невозможно. Несмотря на это, следует понимать, какое значение имело изобретение микроскопа. Он дал возможность увидеть нечто новое, что нельзя видеть глазом. Это удивительный мир, изучение которого приблизило человека к современным достижениям физики, химии и медицины. А это стоит всех трудов.

Первые микроскописты второй половины XVII в. - физик Р. Гук, ана­том М. Мальпиги, ботаник Н. Грю, оптик-любитель А. Левенгук и др. с по­мощью микроскопа описали строение кожи, селезенки, крови, мышц, се­менной жидкости и др. Каждое исследование по существу являлось откры­тием , которое плохо уживалось с метафизическим взглядом на природу, складывавшимся веками. Случайный характер открытий, несовершенство микроскопов, метафизическое мировоззрение не позволили в течение 100 лет (с середины XVIIв. до середины XVIII в.) сделать существенные шаги вперед в познании закономерностей строения животных и растений, хотя и делались попытки обобщений (теории «волокнистого» и «зернисто­го» строения организмов и др.).

Открытие клеточного строения произошло в то время развития человечества, когда экспериментальная физика стала претендовать называться госпожой всех наук. В Лондоне было создано общество величайших ученых, которые делали упор в совершенствовании мира на конкретные физические законы. На встречах членов сообщества не происходило никаких политических дебатов, подвергали обсуждению только различные эксперименты и делились исследованиями по физике, механике. Времена тогда были беспокойными, и ученые соблюдали очень строгую конспирацию. Новое сообщество стали называть «коллегия невидимых». Первым, кто стоял у истоков создания общества, был Роберт Бойль - великий наставник Гука. Коллегия выпускала необходимую научную литературу. Автором одной из книг стал Роберт Гук, который тоже входил в это секретное научное сообщество. Гук уже в те годы слыл изобретателем интересных приборов, позволяющих делать великие открытия. Одним из таких приборов был микроскоп.

Одним из первых создателей микроскопа был Захариус Йансен , который создал его в 1595 году. Задумка изобретения была в том, что монтировались две линзы (выпуклые) внутри специальной трубки с выдвижным тубусом для фокусировки изображения. Этот прибор мог увеличивать исследуемые предметы в 3-10 раз. Роберт Гук усовершенствовал это изделие, что и сыграло главную роль в предстоящем открытии.

Роберт Гук в течение длительного времени наблюдал через созданный микроскоп разные мелкие экземпляры, и однажды для просмотра он взял обычную пробку из сосуда. Рассмотрев тонкий срез этой пробки, ученый удивился сложности структуры вещества. Его взору предстал интересный узор из множества ячеек, удивительно похожий на пчелиные соты. Так как пробка - это продукт растительный, Гук начал изучать с помощью микроскопа срезы стеблей растений. Везде повторялась аналогичная картинка - набор пчелиных сот. В микроскоп было видно множество рядов ячеек, которые разделялись тонкими стенками. Роберт Гук назвал эти ячейки клетками . Впоследствии образовалась целая наука о клетках, которая называется цитология. В цитологию входят изучение строения клеток и их жизнедеятельность. Используется эта наука во многих областях, в том числе медицине, промышленности.

С именем М. Мальпиги этого выдающегося биолога и врача связан важный период микроскопических исследований анатомии животных и растений.
Изобретение и усовершенствование микроскопа позволило ученым открыть
мир чрезвычайно мелких существ, совершенно не похожих на тех,
которые видны невооруженным глазом. Получив микроскоп, Мальпиги сделал ряд важнейших биологических открытий. Сначала он рассматривал
все, что попадало под руку:

  • насекомых,
  • легкие лягушки,
  • кровяные тельца,
  • капиллярные сосуды,
  • кожу,
  • печень,
  • селезенку,
  • растительные ткани.

В исследовании этих предметов он достиг такого совершенства, что стал
одним из создателей микроскопной анатомии. Мальпиги первым употребил
микроскоп для исследования кровообращения.

Используя 180-кратное увеличение, Мальпиги сделал открытие в теории кровообращения: разглядывая препарат легкого лягушки под микроскопом, он заметил пузырьки воздуха, окруженные пленкой, и мелкие кровеносные сосуды, увидел разветвленную сеть капиллярных сосудов, соединявших артерии с венами (1661 г.). На протяжении последующих шести лет Мальпиги сделал наблюдения, которые описал в научных трудах, принесших ему славу великого ученого. Сообщения Мальпиги о строении мозга, языка, сетчатки, нервов, селезенки, печени, кожи и о развитии зародыша в курином яйце, а также об анатомическом строении растений свидетельствуют о весьма тщательных наблюдениях.

Нееимия Грю (1641 – 1712 г.г.). Английский ботаник и врач, микроскопист,

основоположник анатомии растений. Основные работы посвящены вопросамстроения и поларастений. Наряду с М. Мальпиги был основоположником

анатомии растений. Впервые описал:

  • устьица,
  • радиальное расположение ксилемы в корнях,
  • морфологию сосудистой ткани в виде плотного образования вцентре стебля молодого растения,
  • процесс формирования полого цилиндра в старых стеблях.

Ввел термин"сравнительная анатомия", ввёл в ботанику понятия "ткань" и "паренхима". Изучая строение цветков, пришелк выводу, что они являются органами оплодотворения у растений.

Левенгук Антони (24.10.1632– 26.08.1723), нидерландский натуралист. Работал в мануфактурной лавке в Амстердаме. Вернувшись в Делфт, в свободное время занимался шлифованием линз. Всего за свою жизнь Левенгук изготовил около 250 линз, добившись 300-кратного увеличения и достиг в этом большого совершенства. Изготовленные им линзы, которые он вставлял в металлические держатели с прикрепленной к ним иглой для насаживания объекта наблюдения, давали 150–300-кратное увеличение. При помощи таких «микроскопов» Левенгук впервые наблюдал и зарисовал:

  • сперматозоиды (1677),
  • бактерии (1683),
  • эритроциты,
  • простейших,
  • отдельные растительные и животные клетки,
  • яйца и зародыши,
  • мышечную ткань,
  • многие другие части и органы более чем 200 видов растений и животных.

Впервые описал партеногенез у тлей (1695–1700).

Левенгук стоял на позициях преформизма, утверждая, что сформированный зародыш уже содержится в «анималькуле» (сперматозоиде). Отрицал возможность самозарождения. Свои наблюдения он описывал в письмах (всего до 300), которые направлял главным образом в Лондонское королевское общество. Следя за движением крови по капиллярам, показал, что капилляры связывают артерии и вены. Впервые наблюдал эритроциты и обнаружил, что у птиц, рыб и лягушек они имеют овальную форму, а у человека и других млекопитающих – дисковидную. Открыл и описал коловраток и ряд других мелких пресноводных организмов.

Применение ахроматического микроскопа в научных исследованиях послужило новым импульсом к развитию гистологии . В начале XIX в. сдела­но первое изображение ядер растительных клеток. Я. Пуркинье (в 1825- 1827 гг.) описал ядро в яйцеклетке курицы, а затем ядра в клетках различ­ных тканей животных. Позднее им было введено понятие «протоплазма» (цитоплазма) клеток, охарактеризованы форма нервных клеток, строение желез и др.

Р. Броун сделал заключение о том, что ядро является обязатель­ной частью растительной клетки. Таким образом, постепенно стал накап­ливаться материал о микроскопической организации животных и растений и строении «клеток» (cellula), увиденных впервые Р. Гуком.

Создание клеточной теории оказало огромное прогрессивное влияние на развитие биологии и медицины. В середине XIX в. начался период бурно­го развития описательной гистологии. На основе клеточной теории были изучены состав различных органов и тканей, их развитие, что позво­лило уже тогда создать в основных чертах микроскопическую анато­мию и уточнить классификацию тканей с учетом их микроскопического строения (А. Кёлликер и др.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему:

Современные методы микроскопических исследований

Выполнила ученица

2го курса 12 группы

Щукина Серафима Сергеевна

Введение

1. Виды микроскопии

1.1 Световая микроскопия

1.2 Фазово-контрастная микроскопия

1.3 Интерференционная микроскопия

1.4 Поляризационная микроскопия

1.5 Люминесцентная микроскопия

1.6 Ультрафиолетовая микроскопия

1.7 Инфракрасная микроскопия

1.8 Стереоскопическая микроскопия

1.9 Электронная микроскопия

2. Некоторые виды современных микроскопов

2.1 Историческая справка

2.2 Основные узлы микроскопа

2.3 Типы микроскопа

Заключение

Список использованной литературы

Введение

Микроскопические методы исследования - способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу микроскопических методов исследования (М.м.и.) составляет световая и электронная микроскопия. В практической и научной деятельности врачи различных специальностей - вирусологи, микробиологи, цитологи, морфологи, гематологи и др. помимо обычной световой микроскопии используют фазово-контрастную, интерференционную, люминесцентную, поляризационную, стереоскопическую, ультрафиолетовую, инфракрасную микроскопию. В основе этих методов лежат различные свойства света. При электронной микроскопии изображение объектов исследования возникает за счет направленного потока электронов.

микроскопия поляризационный ультрафиолетовый

1. Виды микроскопии

1.1 Световая микроскопия

Для световой микроскопии и основанных на ней других М.м.и. определяющее значение помимо разрешающей способности микроскопа имеет характер и направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света - его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. На использовании этих свойств света и строятся различные М. м. и. Для световой микроскопии биологические объекты обычно окрашивают с целью выявления тех или иных их свойств (рис. 1 ). При этом ткани должны быть фиксированы, т. к. окраска выявляет определенные структуры только убитых клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает ее структуры. Однако в световом микроскопе можно изучать и живые биологические объекты с помощью метода витальной микроскопии. В этом случае применяют темнопольный конденсор, который встраивают в микроскоп.

Рис. 1. Микропрепарат миокарда при внезапной смерти от острой коронарной недостаточности: окраска по Ли позволяет выявить контрактурные пересокращения миофибрилл (участки красного цвета); Ч250.

1.2 Фазово-контрастная микроскопия

Для исследования живых и неокрашенных биологических объектов используют также фазово-контрастную микроскопию. Она основана на дифракции луча света в зависимости от особенностей объекта излучения. При этом изменяется длина и фаза световой волны. Объектив специального фазово-контрастного микроскопа содержит полупрозрачную фазовую пластинку. Живые микроскопические объекты или фиксированные, но не окрашенные, микроорганизмы и клетки из-за их прозрачности практически не изменяют амплитуду и цвет проходящего через них светового луча, вызывая лишь сдвиг фазы его волны. Однако, пройдя через изучаемый объект, лучи света отклоняются от полупрозрачной фазовой пластинки. В результате между лучами, прошедшими через объект, и лучами светового фона возникает разность длины волны. Если эта разность составляет не менее 1/4 длины волны, то появляется зрительный эффект, при котором темный объект отчетливо виден на светлом фоне или наоборот в зависимости от особенностей фазовой пластинки.

1.3 Интерференционная микроскопия

Интерференционная микроскопия решает те же задачи, что и фазово-контрастная. Но если последняя позволяет наблюдать лишь контуры объектов исследования, то с помощью интерференционной микроскопии можно изучать детали прозрачного объекта и проводить их количественный анализ. Это достигается благодаря раздвоению луча света в микроскопе: один из лучей проходит через частицу наблюдаемого объекта, а другой мимо нее. В окуляре микроскопа оба луча соединяются и интерферируют между собой. Возникающую разность фаз можно измерить, определив т. о. массу различных клеточных структур. Последовательное измерение разности фаз света с известными показателями преломления дает возможность определять толщину живых объектов и нефиксированных тканей, концентрацию в них воды и сухого вещества, содержание белков и т. д. На основании данных интерференционной микроскопии можно косвенно судить о проницаемости мембран, активности ферментов, клеточном метаболизме объектов исследования.

1.4 Поляризационная микроскопия

Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимноперпендикулярных плоскостях, т. е. в поляризованном свете. Для этого используют пленчатые поляроиды или призмы Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении (или отражении) лучей света через различные структурные компоненты клеток и тканей, свойства которых неоднородны. В так называемых изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, в анизотропных структурах скорость его распространения меняется в зависимости от направления света по продольной или ванном свете в норме.

Рис. 2а). Микропрепарат миокарда в поляризо поперечной оси объекта.

Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях - отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и обладают положительным двойным преломлением света. Такими свойствами обладают миофибриллы, реснички мерцательного эпителия, нейрофибриллы, коллагеновые волокна и др. Сопоставление характера преломления лучей поляризованного света и величины анизотропии объекта позволяет судить о молекулярной организации его структуры (рис.2 ).Поляризационная микроскопия является одним из гистологических методов исследования, способом микробиологической диагностики, находит применение в цитологических исследованиях и др. При этом в поляризованном свете можно исследовать как окрашенные, так и неокрашенные и нефиксированные, так называемые нативные препараты срезов тканей.

Рис. 2б). Микропрепарат миокарда в поляризованном свете при внезапной смерти от острой коронарной недостаточности -- выявляются участки, в которых отсутствует характерная поперечная исчерченность кардиомиоцитов; Ч400.

1.5 Люминесцентная микроскопия

Широкое распространение имеет люминесцентная микроскопия. Она основана на свойстве некоторых веществ давать свечение - люминесценцию в УФ-лучах или в сине-фиолетовой части спектра. Многие биологические вещества, такие как простые белки, коферменты, некоторые витамины и лекарственные средства, обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться только при добавлении к ним специальных красителей -- флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно либо избирательно окрашивают отдельные клеточные структуры или определенные химические соединения биологического объекта. На этом основано использование люминесцентной микроскопии при цитологических и гистохимических исследованиях. С помощью иммуно-флюоресценции в люминесцентном микроскопе выявляют вирусные антигены и их концентрацию в клетках, идентифицируют вирусы, определяют антигены и антитела, гормоны, различные продукты метаболизма и т. д. (рис. 3 ). В связи с этим люминесцентную микроскопию применяют в лабораторной диагностике таких инфекций, как герпес, эпидемический паротит, вирусный гепатит, грипп и др., используют в экспресс диагностике респираторных вирусных инфекций, исследуя отпечатки со слизистой оболочки носа больных, и при дифференциальной диагностике различных инфекций. В патоморфологии с помощью люминесцентной микроскопии распознают злокачественные опухоли в гистологических и цитологических препаратах, определяют участки ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей.

Рис. 3. Микропрепарат перитонеального макрофага в клеточной культуре, люминесцентная микроскопия.

1.6 Ультрафиолетовая микроскопия

Ультрафиолетовая микроскопия основана на способности некоторых веществ, входящих в состав живых клеток, микроорганизмов или фиксированных, но не окрашенных, прозрачных в видимом свете тканей, поглощать УФ-излучение с определенной длиной волн (400- 250 нм). Этим свойством обладают высокомолекулярные соединения, такие как нуклеиновые кислоты, белки, ароматические кислоты (тирозин, триптофан, метилаланин), пуриновые и пирамидиновые основания и др. С помощью ультрафиолетовой микроскопии уточняют локализацию и количество указанных веществ, а в случае исследования живых объектов - их изменения в процессе жизнедеятельности.

1.7 Инфракрасная микроскопия

Инфракрасная микроскопия позволяет исследовать непрозрачные для видимого света и УФ-излучения объекты путем поглощения их структурами света с длиной волны 750--1200 нм. Для инфракрасной микроскопии не требуется предварительной хим. обработки препаратов. Этот вид М. м. и. наиболее часто используют в зоологии, антропологии, других отраслях биологии. В медицине инфракрасную микроскопию применяют в основном в нейроморфологии и офтальмологии.

1.8 Стереоскопическая микроскопия

Для исследования объемных объектов используют стереоскопическую микроскопию. Конструкция стереоскопических микроскопов позволяет видеть объект исследования правым и левым глазом под разными углами. Исследуют непрозрачные объекты при относительно небольшом увеличении (до 120 раз). Стереоскопическая микроскопия находит применение в микрохирургии, в патоморфологии при специальном изучении биопсийного, операционного и секционного материала, в судебно-медицинских лабораторных исследованиях.

1.9 Электронная микроскопия

Для изучения на субклеточном и макромолекулярном уровнях структуры клеток, тканей микроорганизмов и вирусов используют электронную микроскопию. Этот М. м. и. позволил перейти на качественно новый уровень изучения материи. Он нашел широкое применение в морфологии, микробиологии, вирусологии, биохимии, онкологии, генетике, иммунологии. Резкое повышение разрешающей способности электронного микроскопа обеспечивается потоком электронов, проходящих в вакууме через электромагнитные поля, создаваемые электромагнитными линзами. Электроны могут проходить через структуры исследуемого объекта (трансмиссионная электронная микроскопия) или отражаться от них (сканирующая электронная микроскопия), отклоняясь под разными углами, в результате чего возникает изображение на люминесцентном экране микроскопа. При трансмиссионной (просвечивающей) электронной микроскопии получают плоскостное изображение структур (рис. 4 ), при сканирующей - объемное (рис. 5 ). Сочетание электронной микроскопии с другими методами, например, с радиоавтографией, гистохимическими, иммунологическими методами исследования, позволяет проводить электронно-радиоавтографические, электронно-гистохимические, электронно-иммунологические исследования.

Рис. 4. Электронограмма кардиомиоцита, полученная при трансмиссионной (просвечивающей) электронной микроскопии: отчетливо видны субклеточные структуры; Ч22000.

Электронная микроскопия требует специальной подготовки объектов исследования, в частности химической или физической фиксации тканей и микроорганизмов. Биопсийный материал и секционный материал после фиксации обезвоживают, заливают в эпоксидные смолы, режут стеклянными или алмазными ножами на специальных ультратомах, позволяющих получать ультратонкие срезы тканей толщиной 30--50 нм. Их контрастируют и затем изучают в электронном микроскопе. В сканирующем (растровом) электронном микроскопе изучают поверхность различных объектов, напыляя на них в вакуумной камере электронно-плотные вещества, и исследуют так наз. реплики, повторяющие контуры образца.

Рис. 5. Электронограмма лейкоцита и фагоцитируемой им бактерии, полученная при сканирующей электронной микроскопии; Ч20000.

2. Некоторые виды современных микроскопов

Фазово-контрастный микроскоп (аноптральный микроскоп) служит для исследования прозрачных объектов, которые не видны на светлом поле и не подлежат окрашиванию из-за возникновения аномалий в исследуемых образцах.

Интерференционный микроскоп дает возможность исследовать объекты с низкими показателями преломления света и чрезвычайно малой толщины.

Ультрафиолетовый и инфракрасный микроскопы предназначены для исследования объектов в ультрафиолетовом или инфракрасном участке светового спектра. Они снабжены флюоресцентными экраном, на котором формируется изображение исследуемого препарата, фотокамерой с чувствительным к этим излучениям фотоматериалом или электронно-оптическим преобразователем для формирования изображения на экране осциллоскопа. Длина волны ультрафиолетовой части спектра составляет 400--250 нм, поэтому в ультрафиолетовом микроскопе можно получить более высокое разрешение, чем в световом, где освещение осуществляется видимым световым излучением с длиной волны 700--400 нм. Преимуществом этого М. является также то, что невидимые в обычном световом микроскопе объекты становятся видимыми, поскольку поглощают УФ-излучение. В инфракрасном микроскопе наблюдение объектов ведется на экране электронно-оптического преобразователя или фотографируется. С помощью инфракрасной микроскопии изучают внутреннюю структуру непрозрачных объектов.

Поляризационный микроскоп позволяет выявлять неоднородности (анизотропию) структуры при изучении строения тканей и образований в организме в поляризованном свете. Освещение препарата в поляризационном микроскопе осуществляется через поляризатор-пластинку, которая обеспечивает прохождение света в определенной плоскости распространения волн. Когда поляризованный свет, взаимодействуя со структурами, изменяется, то структуры резко контрастируют, что широко используют в медико-биологических исследованиях при изучении препаратов крови, гистологических препаратов, шлифов зубов, костей и т. д.

Люминесцентный микроскоп (МЛ-2, МЛ-3) предназначен для исследования люминесцирующих объектов, что достигается при освещении последних с помощью УФ-излучения. Наблюдая или фотографируя препараты в свете их видимой возбужденной флюоресценции (т. е. в отраженном свете), можно судить о структуре исследуемого образца, что используется в гистохимии, гистологии, микробиологии и при иммунологических исследованиях. Прямое окрашивание люминесцентными красителями позволяет более четко выявлять такие структуры клеток, которые трудно рассмотреть в световом микроскопе.

Рентгеновский микроскоп используется для исследования объектов в рентгеновском излучении, поэтому такие микроскопов снабжены микрофокусным рентгеновским источником излучения, преобразователем рентгеновского изображения в видимое -- электронно-оптическим преобразователем, формирующим видимое изображение на осциллографической трубке или на фотопленке. Рентгеновские микроскопы имеют линейное разрешение до 0,1 мкм, что позволяет исследовать тонкие структуры живого вещества.

Электронный микроскоп предназначен для исследования сверхтонких структур, неразличимых в световых микроскопах. В отличие от светового, в электронном микроскопе разрешение определяется не только явлениями дифракции, но и различными аберрациями электронных линз, которые практически невозможно корригировать. Наводка микроскопа, в основном, производится диафрагмированием за счет применения малых апертур электронных пучков.

2.1 Историческая справка

Свойство системы из двух линз давать увеличенные изображения предметов было известно уже в 16 в. в Нидерландах и Северной Италии мастерам, изготовлявшим очковые стекла. Имеются сведения, что около 1590 прибор типа М. был построен З. Янсеном (Нидерланды). Быстрое распространение М. и их совершенствование, главным образом ремесленниками-оптиками, начинается с 1609--10, когда Г. Галилей, изучая сконструированную им зрительную трубу (см. Зрительная труба), использовал её и в качестве М., изменяя расстояние между объективом и окуляром. Первые блестящие успехи применения М. в научных исследованиях связаны с именами Р. Гука (около 1665; в частности, он установил, что животные и растительные ткани имеют клеточное строение) и особенно А. Левенгука, открывшего с помощью М. микроорганизмы (1673--77). В начале 18 в. М. появились в России: здесь Л. Эйлер (1762; «Диоптрика», 1770--71) разработал методы расчёта оптических узлов М. В 1827 Дж. Б. Амичи впервые применил в М. иммерсионный объектив. В 1850 английский оптик Г. Сорби создал первый М. для наблюдения объектов в поляризованном свете.

Широкому развитию методов микроскопических исследований и совершенствованию различных типов М. во 2-й половине 19 и в 20 вв. в значительной степени способствовала научная деятельность Э. Аббе, который разработал (1872--73) ставшую классической теорию образования изображений несамосветящихся объектов в М. Английский учёный Дж. Сиркс в 1893 положил начало интерференционной микроскопии. В 1903 австр. исследователи Р. Зигмонди и Г. Зидентопф создали т. н. ультрамикроскоп. В 1935 Ф. Цернике предложил метод фазового контраста для наблюдения в М. прозрачных слабо рассеивающих свет объектов. Большой вклад в теорию и практику микроскопии внесли сов. учёные -- Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, В. П. Линник.

2.2 Основные узлы микроскопа

В большинстве типов М. (за исключением инвертированных, см. ниже) над предметным столиком, на котором закрепляют препарат, располагается устройство для крепления объективов, а под столиком устанавливается конденсор. Любой М. имеет тубус (трубку), в котором устанавливаются окуляры; обязательной принадлежностью М. являются также механизмы для грубой и точной фокусировки (осуществляемой путём изменения относительного положения препарата, объектива и окуляра). Все эти узлы крепятся на штативе или корпусе М.

Тип применяемого конденсора зависит от выбора метода наблюдения. Светлопольные конденсоры и конденсоры для наблюдения по методу фазового или интерференционного контраста представляют собой сильно отличающиеся одна от другой двух- или трёхлинзовые системы. У светлопольных конденсоров числовая апертура может достигать 1,4; в их состав входит апертурная Ирисовая диафрагма, которая иногда может смещаться в сторону для получения косого освещения препарата. Фазово-контрастные конденсоры снабжены кольцевыми диафрагмами. Сложными системами из линз и зеркал являются темнопольные конденсоры. Отдельную группу составляют эпиконденсоры -- необходимые при наблюдении по методу тёмного поля в отражённом свете системы кольцеобразных линз и зеркал, устанавливаемых вокруг объектива. В УФ микроскопии применяются специальные зеркально-линзовые и линзовые конденсоры, прозрачные для ультрафиолетовых лучей.

Объективы в большинстве современных М. сменные и выбираются в зависимости от конкретных условий наблюдения. Часто несколько объективов закрепляются в одной вращающейся (т. н. револьверной) головке; смена объектива в этом случае осуществляется простым поворотом головки. По степени исправления хроматической аберрации (см. Хроматическая аберрация) различают микрообъективы Ахроматы и апохроматы (см. Ахромат). Первые наиболее просты по устройству; хроматическая аберрация в них исправлена только для двух длин волн, и изображение при освещении объекта белым светом остаётся слегка окрашенным. В апохроматах эта аберрация исправлена для трёх длин волн, и они дают бесцветные изображения. Плоскость изображения у ахроматов и апохроматов несколько искривлена (см. Кривизна поля). Аккомодация глаза и возможность просмотра всего поля зрения с помощью перефокусировки М. отчасти компенсируют этот недостаток при визуальном наблюдении, однако он сильно сказывается при микрофотографировании -- крайние участки изображения получаются нерезкими. Поэтому широко используют микрообъективы с дополнительным исправлением кривизны поля -- планахроматы и планапохроматы. В сочетании с обычными объективами применяют специальные проекционные системы -- гомали, вставляемые вместо окуляров и исправляющие кривизну поверхности изображения (для визуального наблюдения они непригодны).

Кроме того, микрообъективы различаются: а) по спектральным характеристикам -- на объективы для видимой области спектра и для УФ и ИК микроскопии (линзовые или зеркально-линзовые); б) по длине тубуса, на которую они рассчитаны (в зависимости от конструкции М.), -- на объективы для тубуса 160 мм, для тубуса 190 мм и для т. н. «длины тубуса бесконечность» (последние создают изображение «на бесконечности» и применяются совместно с дополнительной -- т. н. тубусной -- линзой, переводящей изображение в фокальную плоскость окуляра); в) по среде между объективом и препаратом -- на сухие и иммерсионные; г) по методу наблюдения -- на обычные, фазово-контрастные, интерференционные и др.; д) по типу препаратов -- для препаратов с покровным стеклом и без него. Отдельный тип представляют собой эпиобъективы (сочетание обычного объектива с эпиконденсором). Многообразие объективов обусловлено разнообразием методов микроскопических наблюдений и конструкций М., а также различиями в требованиях к исправлению аберраций в разных условиях работы. Поэтому каждый объектив можно применять только в тех условиях, для которых он рассчитан. Например, объективом, рассчитанным для тубуса 160 мм, нельзя пользоваться в М. с длиной тубуса 190 мм; с объективом для препаратов с покровным стеклом нельзя наблюдать препараты без покровного стекла. Особенно важно соблюдать расчётные условия при работе с сухими объективами больших апертур (А > 0,6), которые очень чувствительны ко всяким отклонениям от нормы. Толщина покровных стекол при работе с этими объективами должна быть равна 0,17 мм. Иммерсионный объектив можно использовать только с той иммерсией, для которой он рассчитан.

Тип применяемого окуляра при данном методе наблюдения определяется выбором объектива М. С ахроматами малых и средних увеличении используют окуляры Гюйгенса, с апохроматами и ахроматами больших увеличений -- т. н. компенсационные окуляры, рассчитываемые так, чтобы их остаточная хроматическая аберрация была другого знака, чем у объективов, что улучшает качество изображения. Кроме того, существуют специальные фотоокуляры и проекционные окуляры, которые проектируют изображение на экран или фотопластинку (сюда же можно отнести упомянутые выше гомали). Отдельную группу составляют кварцевые окуляры, прозрачные для УФ лучей.

Разнообразные принадлежности к М. позволяют улучшить условия наблюдения и расширить возможности исследований. Осветители различных типов предназначены для создания наилучших условий освещения; окулярные микрометры (см. Окулярный микрометр) служат для измерения размеров объектов; бинокулярные тубусы дают возможность наблюдать препарат одновременно двумя глазами; микрофотонасадки и микрофотоустановки применяются при микрофотографии; рисовальные аппараты дают возможность зарисовывать изображения. Для количественных исследований применяются специальные устройства (например, микроспектрофотометрические насадки).

2.3 Типы микроскопов

Конструкция М., его оснащение и характеристики основных узлов определяются либо областью применения, кругом проблем и характером объектов, для исследования которых он предназначен, либо методом (методами) наблюдения, на которые он рассчитан, либо же и тем и другим вместе. Всё это привело к созданию различных типов специализированных М., позволяющих с высокой точностью изучать строго определённые классы объектов (или даже только некоторые определённые их свойства). С другой стороны, существуют т. н. универсальные М., с помощью которых можно различными методами наблюдать различные объекты.

Биологические М. относятся к числу наиболее распространённых. Они применяются для ботанических, гистологических, цитологических, микробиологических, медицинских исследований, а также в областях, не связанных непосредственное биологией, -- для наблюдения прозрачных объектов в химии, физике и т. д. Существует много моделей биологических М., отличающихся конструктивным оформлением и дополнительными принадлежностями, которые существенно расширяют круг изучаемых объектов. К этим принадлежностям относятся: сменные осветители проходящего и отражённого света; сменные конденсоры для работы по методам светлого и тёмного полей; фазово-контрастные устройства; окулярные микрометры; микрофотонасадки; наборы светофильтров и поляризационных устройств, позволяющие в обычном (неспециализированном) М. применять технику люминесцентной и поляризационной микроскопии. Во вспомогательном оборудовании для биологическиого М. особенно важную роль играют средства микроскопической техники (см. Микроскопическая техника), предназначенные для подготовки препаратов и проведения с ними различных операций, в том числе и непосредственно в процессе наблюдения (см. Микроманипулятор, Микротом).

Биологические исследовательские М. оснащаются набором сменных объективов для различных условий и методов наблюдения и типов препаратов, в том числе эпиобъективами для отражённого света и зачастую фазово-контрастными объективами. Набору объективов соответствует комплект окуляров для визуального наблюдения и микрофотографирования. Обычно такие М. имеют бинокулярные тубусы для наблюдения двумя глазами.

Кроме М. общего назначения, в биологии широко используются и различные М., специализированные по методу наблюдения (см. ниже).

Инвертированные М. отличаются тем, что объектив в них располагается под наблюдаемым предметом, а конденсор -- сверху. Направление хода лучей, прошедших сверху вниз через объектив, изменяется системой зеркал, и в глаз наблюдателя они попадают, как обычно, снизу вверх (рис. 8 ). М. этого типа предназначены для исследования громоздких объектов, которые трудно или невозможно расположить на предметных столиках обычных М. В биологии с помощью таких М. изучают находящиеся в питательной среде Культуры тканей, которые помещают в термостатирующую камеру для поддержания заданной температуры. Инвертированные М. применяют также для исследования химических реакций, определения точек плавления материалов и в других случаях, когда для осуществления наблюдаемых процессов требуется громоздкое вспомогательное оборудование. Для микрофотографирования и микрокиносъёмки инвертированные М. снабжают специальными устройствами и камерами.

Особенно удобна схема инвертированного М. для наблюдения в отражённом свете структур различных поверхностей. Поэтому она применяется в большинстве металлографических М. В них образец (шлиф металла, сплава или минерала) устанавливается на столике полированной поверхностью вниз, а остальная его часть может иметь произвольную форму и не требует какой-либо обработки. Существуют также металлографические М., в которых объект располагают снизу, закрепляя его на специальной пластине; взаимное положение узлов в таких М. то же, что и в обычных (неинвертированных) М. Изучаемая поверхность часто предварительно протравливается, благодаря чему зёрна её структуры становятся резко отличимыми друг от друга. В М. этого типа можно использовать метод светлого поля при прямом и косом освещении, метод тёмного поля и наблюдение в поляризованном свете. При работе в светлом поле объектив одновременно служит и конденсором. Для темнопольного освещения применяются зеркальные параболические эпиконденсоры. Введение специального вспомогательного устройства позволяет осуществить фазовый контраст в металлографических М. с обычным объективом (рис. 9 ).

Люминесцентные М. оснащаются набором сменных светофильтров, подбирая которые можно выделить в излучении осветителя часть спектра, возбуждающую люминесценцию конкретного исследуемого объекта. Подбирается также светофильтр, пропускающий от объекта только свет люминесценции. Свечение многих объектов возбуждается УФ лучами или коротковолновой частью видимого спектра; поэтому источниками света в люминесцентных М. служат дающие именно такое (и очень яркое) излучение ртутные лампы сверхвысокого давления (см. Газоразрядные источники света). Помимо специальных моделей люминесцентных М., имеются люминесцентные устройства, используемые совместно с обычными М.; они содержат осветитель с ртутной лампой, набор светофильтров и т. н. опак-иллюминатор для освещения препаратов сверху.

Ультрафиолетовые и инфракрасные М. служат для исследований в невидимых для глаза областях спектра. Их принципиальные оптические схемы аналогичны схеме обычных М. Из-за большой сложности исправления аберраций в УФ и ИК областях конденсор и объектив в таких М. часто представляют собой Зеркально-линзовые системы, в которых существенно уменьшается или полностью отсутствует хроматическая аберрация. Линзы изготовляются из материалов, прозрачных для УФ (кварц, флюорит) или ИК (кремний, германий, флюорит, фтористый литий) излучения. Ультрафиолетовые и инфракрасные М. снабжены фотокамерами, в которых фиксируется невидимое изображение; визуальное наблюдение через окуляр в обычном (видимом) свете служит, когда это возможно, лишь для предварительной фокусировки и ориентировки объекта в поле зрения М. Как правило, в этих М. имеются электроннооптические преобразователи, превращающие невидимое изображение в видимое.

Поляризационные М. предназначены для изучения (с помощью оптических компенсаторов) изменений в поляризации света, прошедшего через объект или отражённого от него, что открывает возможности количественного или полуколичественного определения различных характеристик оптически активных объектов. Узлы таких М. обычно выполняются так, чтобы облегчить точные измерения: окуляры снабжаются перекрестием, микрометрической шкалой или сеткой; вращающийся предметный столик -- угломерным лимбом для измерения угла поворота; часто на предметном столике крепится Федорова столик (см. Фёдорова столик), дающий возможность произвольно поворачивать и наклонять препарат для нахождения кристаллографических и кристаллооптических осей. Объективы поляризационных М. специально подбираются так, чтобы в их линзах отсутствовали внутренние напряжения, приводящие к деполяризации света. В М. этого типа обычно имеется включаемая и выключаемая вспомогательная линза (т. н. линза Бертрана), используемая при наблюдениях в проходящем свете; она позволяет рассматривать интерференционные фигуры (см. Кристаллооптика), образуемые светом в задней фокальной плоскости объектива после прохождения через исследуемый кристалл.

С помощью интерференционных М. наблюдают прозрачные объекты по методу интерференционного контраста; многие из них конструктивно аналогичны обычным М., отличаясь лишь наличием специального конденсора, объектива и измерительного узла. Если наблюдение производится в поляризованном свете, то такие М. снабжаются поляризатором и анализатором. По области применения (главным образом биологические исследования) эти М. можно отнести к специализированным биологическим М. К интерференционным М. часто относят также Микроинтерферометры -- М. особого типа, применяемые для изучения микрорельефа поверхностей обработанных металлических деталей.

Стереомикроскопы. Бинокулярные тубусы, используемые в обычных М., при всём удобстве наблюдения двумя глазами не дают стереоскопического эффекта: в оба глаза попадают в этом случае под одинаковыми углами одни и те же лучи, лишь разделяемые на два пучка призменной системой. Стереомикроскопы, обеспечивающие подлинно объёмное восприятие микрообъекта, представляют собой фактически два М., выполненных в виде единой конструкции так, что правый и левый глаза наблюдают объект под разными углами (рис. 10 ). Наиболее широкое применение такие М. находят там, где требуется производить какие-либо операции с объектом в ходе наблюдения (биологического исследования, хирургической операции на сосудах, мозге, в глазу -- Микрургия, сборка миниатюрных устройств, например Транзисторов), -- стереоскопическое восприятие облегчает эти операции. Удобству ориентировки в поле зрения М. служит и включение в его оптическую схему призм, играющих роль оборачивающих систем (см. Оборачивающая система); изображение в таких М. прямое, а не перевёрнутое. Так как угол между оптическими осями объективов в стереомикроскопах обычно? 12°, их числовая апертура, как правило, не превышает 0,12. Поэтому и полезное увеличение таких М. бывает не более 120.

М. сравнения состоят из двух конструктивно объединённых обычных М. с единой окулярной системой. Наблюдатель видит в двух половинах поля зрения такого М. изображения сразу двух объектов, что позволяет непосредственно сравнить их по цвету, структуре и распределению элементов и другим характеристикам. М. сравнения широко применяются при оценке качества обработки поверхностей, определении сортности (сравнение с эталонным образцом) и т. д. Специальные М. такого типа используют в криминологии, в частности для идентификации оружия, из которого выпущена исследуемая пуля.

В телевизионных М., работающих по схеме микропроекции, изображение препарата преобразуется в последовательность электрических сигналов, которые затем воспроизводят это изображение в увеличенном масштабе на экране электроннолучевой трубки (см. Электроннолучевая трубка) (кинескопа). В таких М. можно чисто электронным путём, изменяя параметры электрической цепи, по которой проходят сигналы, менять контраст изображения и регулировать его яркость. Электрическре усиление сигналов позволяет проектировать изображения на большой экран, в то время как обычная микропроекция требует для этого чрезвычайно сильного освещения, часто вредного для микроскопических объектов. Большое достоинство телевизионных М. заключается в том, что с их помощью можно дистанционно изучать объекты, близость к которым опасна для наблюдателя (например, радиоактивные).

При многих исследованиях необходимо вести счёт микроскопических частиц (например, бактерий в колониях, аэрозолей, частиц в коллоидных растворах, клеток крови и т. д.), определять площади, занимаемые зёрнами одного и того же рода в шлифах сплава, и производить др. аналогичные измерения. Преобразование изображения в телевизионных М. в серию электрических сигналов (импульсов) дало возможность построить автоматические счётчики микрочастиц, регистрирующие их по числу импульсов.

Назначение измерительных М. состоит в точном измерении линейных и угловых размеров объектов (зачастую совсем не малых). По способу измерения их можно разделить на два типа. Измерительные М. 1-го типа применяются только в тех случаях, когда измеряемое расстояние не превышает линейных размеров поля зрения М. В таких М. непосредственно (с помощью шкалы или винтового окулярного микрометра (см.Окулярный микрометр)) измеряется не сам объект, а его изображение в фокальной плоскости окуляра, и лишь затем, по известному значению увеличения объектива, вычисляется измеренное расстояние на объекте. Часто в этих М. изображения объектов сравниваются с образцовыми профилями, нанесёнными на пластинки сменных окулярных головок. В измерительныхМ. 2-го типа предметный столик с объектом и корпус М. можно с помощью точных механизмов перемещать друг относительно друга (чаще -- столик относительно корпуса); измеряя это перемещение микрометрическим винтом или шкалой, жестко скрепленной с предметным столиком, определяют расстояние между наблюдаемыми элементами объекта. Существуют измерительные М., у которых измерение производится лишь в одном направлении (однокоординатные М.). Гораздо более распространены М. с перемещениями предметного столика в двух перпендикулярных направлениях (пределы перемещений до 200Ч500 мм); для специальных целей применяются М., в которых измерения (а следовательно, и относительные перемещения столика и корпуса М.) возможны в трёх направлениях, соответствующих трём осям прямоугольных координат. На некоторых М. можно проводить измерения в полярных координатах; для этого предметный столик делают вращающимся и снабжают шкалой и Нониусом для отсчёта углов поворота. В наиболее точных измерительных М. 2-го типа употребляются стеклянные шкалы, а отсчёты на них осуществляются с помощью вспомогательного (т. н. отсчётного) микроскопа (см. ниже). Точность измерений в М. 2-го типа значительно выше по сравнению с М. 1-го типа. В лучших моделях точность линейных измерений обычно порядка 0,001 мм, точность измерения углов -- порядка 1". Измерительные М. 2-го типа широко применяются в промышленности (особенно в машиностроении) для измерения и контроля размеров деталей машин, инструментов и пр.

В устройствах для особо точных измерений (например, геодезических, астрономических и т. д.) отсчёты на линейных шкалах и разделённых кругах угломерных инструментов производят с помощью специальныхотсчётных М. -- шкаловых М. и М.-микрометров. В первых имеется вспомогательная стеклянная шкала. Её изображение регулировкой увеличения объектива М. делают равным наблюдаемому интервалу между делениями основной шкалы (или круга), после чего, отсчитывая положение наблюдаемого деления между штрихами вспомогательной шкалы, можно непосредственно определить его с точностью около 0,01 интервала между делениями. Ещё выше точность отсчётов (порядка 0,0001 мм) в М.-микрометрах, в окулярной части которых помещен нитяной или спиральный микрометр. Увеличение объектива регулируют так, чтобы перемещению нити между изображениями штрихов измеряемой шкалы соответствовало целое число оборотов (или полуоборотов) винта микрометра.

Помимо описанных выше, имеется значительное число ещё более узко специализированных типов М., например М. для подсчёта и анализа следов элементарных частиц и осколков деления ядер в ядерных фотографических эмульсиях (см. Ядерная фотографическая эмульсия), высокотемпературные М. для изучения объектов, нагретых до температуры порядка 2000 °С, контактные М. для исследования поверхностей живых органов животных и человека (объектив в них прижимается вплотную к изучаемой поверхности, а фокусировка М. производится специальной встроенной системой).

Заключение

Чего же можно ждать от микроскопии завтрашнего дня? На решение каких задач можно рассчитывать? Прежде всего - распространение на все новые и новые объекты. Достижение атомарного разрешения, безусловно, является крупнейшим завоеванием научной и технической мысли. Однако не будем забывать, что это достижение распространяется лишь на ограниченный круг объектов, помещенных к тому же в весьма специфические, необычные и сильно воздействующие условия. Поэтому необходимо стремиться распространить атомарное разрешение на широкий круг объектов.

Со временем можно ожидать привлечения «на работу» в микроскопах другие заряженные частицы. Ясно, однако, что этому должны предшествовать поиски и разработка мощных источников таких частиц; кроме того, создание микроскопов нового типа будет определяться появлением конкретных научных задач, в решение которых именно эти новые частицы внесут решающий вклад.

Будут совершенствоваться микроскопические исследования процессов в динамике, т.е. происходящих непосредственно в микроскопе или в сочлененных с ним установках. К таким процессам относятся испытания образцов в микроскопе (нагрев, растяжение и т.д.) непосредственно во время анализа их микроструктуры. Здесь успех будет обусловлен, в первую очередь, развитием техники высокоскоростной фотографии и повышением временного разрешения детекторов (экранов) микроскопов, а также использованием мощных современных компьютеров.

Список использованной литературы

1. Малая медицинская энциклопедия. -- М.: Медицинская энциклопедия. 1991--96 гг.

2. Первая медицинская помощь. -- М.: Большая Российская Энциклопедия. 1994 г.

3. Энциклопедический словарь медицинских терминов. -- М.: Советская энциклопедия. -- 1982--1984 гг.

4. http://dic.academic.ru/

5. http://ru.wikipedia.org/

6. www.golkom.ru

7. www.avicenna.ru

8. www.bionet.nsc.ru

Размещено на Allbest.ru

...

Подобные документы

    Характеристика лабораторной диагностики вирусных инфекций при помощи электронной микроскопии. Подготовка срезов пораженной ткани к исследованию. Описание метода иммуноэлектронной микроскопии. Иммунологические методы исследования, описание хода анализа.

    курсовая работа , добавлен 30.08.2009

    Эналаприл: основные свойства и механизм получения. Инфракрасная спектроскопия как метод идентификации эналаприла. Методы испытания на чистоту данного лекарственного вещества. Фармакодинамика, фаармакокинетика, применение, и побочные эффекты эналаприла.

    реферат , добавлен 13.11.2012

    Методы исследования головного мозга: электроэнцефалографические, неврологические, рентгенологические и ультразвуковые. Современные методы визуализации: компьютерная томография, магниро-резонансная томография, вентрикулоскопия, стереоскопическая биопсия.

    презентация , добавлен 05.04.2015

    Понятие антропометрии, её признаки, методики и развитие как науки, принципы антропометрических исследований. Телосложение человека и его виды. Основные типы пропорций тела. Генетические условия соматической конституции. Типология человека по Э. Кречмеру.

    презентация , добавлен 30.05.2012

    Требования к шовному материалу. Классификация шовного материала. Типы хирургических игл. Узлы в хирургии. Внутрикожные швы Холстеда и Холстеда-Золтона. Шов Апоневроза. Однорядные, двухрядные и трехрядные швы. Основные разновидности сосудистых швов.

    презентация , добавлен 20.12.2014

    Характеристика вида Origanum vulgare L. Степень химической изученности душицы обыкновенной и ее биологически активные соединения. Требования нормативной документации на сырье. Методы микроскопических исследований. Качественные реакции на кумарины.

    курсовая работа , добавлен 11.05.2014

    Сущность и отличительные особенности статистического исследования, требования к нему, используемые методы и приемы. Интерпретация и оценка полученных результатов. Типы наблюдений и принципы их реализации. Классификация опросов и анализ их эффективности.

    презентация , добавлен 18.12.2014

    Понятие инфектологии и инфекционного процесса. Основные признаки, формы и источники инфекционных болезней. Виды болезнетворных микроорганизмов. Периоды инфекционной болезни у человека. Методы микробиологических исследований. Методы окраски мазков.

    презентация , добавлен 25.12.2011

    Естественные методы контрацепции. Метод лактационной аменореи как вид контрацепции. Современные спермициды, их преимущества и принцип действия. Барьерные методы: презервативы. Гормональные виды контрацепции. Механизм действия оральных контрацептивов.

    презентация , добавлен 17.10.2016

    Шок - неспецифический фазово-протекающий клинический синдром, характеризующийся общим тяжелым состоянием организма: патологическая классификация, стадии, виды и характеристика гемодинамики. Стандартный мониторинг при шоке, лечение, показания к операциям.

Подробное решение параграф § 1 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Вспомните!

Какие достижения современной биологии вам известны?

рентгенология

аппараты УЗИ, ЭМРТ

установление молекулярной структуры ДНК

расшифровка генома человека и других организмов

генная инженерия

3D-биопринтеры

Электронные сканирующие микроскопы

Экстракорпоральное оплодотворение и др.

Каких ученых-биологов вы знаете?

Линней, Ламарк, Дарвин, Мендель, Морган, Павлов, Пастер, Гук, Левенгук, Броун, Пурнинье, Бэр, Мечников, Мичурин, Вернадский, Ивановский, Флеминг, Тенсли, Сукачев, Четвериков, Лайль, Опарин, Шванн, Шлейден, Чаграфф, Навашин, Тимирязев, Мальпиги, Гольджи и др.

Вопросы для повторения и задания

1. Расскажите о вкладе в развитие биологии древнегреческих и древне-римских философов и врачей.

Первым учёным, создавшим научную медицинскую школу, был древнегреческий врач Гиппократ (ок. 460 - ок. 370 до н. э.). Он считал, что у каждой болезни есть естественные причины и их можно узнать, изучая строение и жизнедеятельность человеческого организма. С древних времён и по сей день врачи торжественно произносят клятву Гиппократа, обещая хранить врачебную тайну и ни при каких обстоятельствах не оставлять больного без медицинской помощи. Великий энциклопедист древности Аристотель (384-322 до н. э.). Стал одним из основателей биологии как науки, впервые обобщив биологические знания, накопленные до него человечеством. Он разработал систематику животных, определив в ней место и человеку, которого он называл «общественным животным, наделённым разумом». Многие труды Аристотеля были посвящены происхождению жизни. Древнеримский учёный и врач Клавдий Гален (ок. 130 - ок. 200), изучая строение млекопитающих, заложил основы анатомии человека. В течение следующих пятнадцати веков его труды были основным источником знаний по анатомии.

2. Охарактеризуйте особенности воззрений на живую природу в Средние века, эпоху Возрождения.

Резко возрос интерес к биологии в эпоху Великих географических открытий (XV в.). Открытие новых земель, налаживание торговых отношений между государствами расширяли сведения о животных и растениях. Ботаники и зоологи описывали множество новых, неизвестных ранее видов организмов, принадлежащих к различным царствам живой природы. Один из выдающихся людей этой эпохи - Леонардо да Винчи (1452-1519) - описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. После того как был снят церковный запрет на вскрытие человеческого тела, блестящих успехов достигла анатомия человека, что получило отражение в классическом труде Андреаса Везалия (1514-1564) «Строение человеческого тела» (рис. 1). Величайшее научное достижение - открытие кровообращения - совершил в XVII в. английский врач и биолог Уильям Гарвей (1578-1657).

3. Используя знания, полученные на уроках истории, объясните, почему в Средние века в Европе наступил период застоя во всех областях знаний.

После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла. Этому способствовали феодальные порядки, установившиеся во всех европейских странах, постоянные войны между феодалами, нашествия полудиких народов с востока, массовые эпидемии, а главное - идеологическое закабаление умов широких народных масс римско-католической церковью. В этот период римско-католическая церковь, несмотря на многие неудачи в борьбе за политическое господство, распространила свое влияние во всей Западной Европе. Имея огромную армию духовенства различных рангов, папство фактически добилось полного господства христианской римско-католической идеологии среди всех западноевропейских народов. Проповедуя смирение и покорность, оправдывая существующие феодальные порядки, римско-католическое духовенство вместе с тем жестоко преследовало все новое и прогрессивное. Естественные науки и вообще так называемое светское образование были полностью подавлены.

4. Какое изобретение XVII в. дало возможность открыть и описать клетку?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов.

5. Каково значение для биологической науки работ Л. Пастера и И. И. Мечникова?

Труды Луи Пастера (1822-1895) и Ильи Ильича Мечникова (1845-1916) определили появление иммунологии. В 1876 г. Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, холеры, бешенства, куриной холеры и других болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы, бешенства. Первая прививка против бешенства была сделана Пастером 6 июля 1885 г. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт), в котором работали многие известные ученые.

Мечников, обнаружив в 1882 г. явление фагоцитоза, разработал на его основе сравнительную патологию воспаления, а в дальнейшем - фагоцитарную теорию иммунитета, за что получил в 1908 г. Нобелевскую премию совместно с П. Эрлихом. Многочисленные работы Мечникова по бактериологии посвящены вопросам эпидемиологии холеры, брюшного тифа, туберкулеза и других инфекционных заболеваний. Мечников создал первую русскую школу микробиологов, иммунологов и патологов; активно участвовал в создании научно-исследовательских учреждений, разрабатывающих различные формы борьбы с инфекционными заболеваниями.

6. Перечислите основные открытия, сделанные в биологии в XX в.

В середине XX в. в биологию начали активно проникать методы и идеи других естественных наук. Достижения современной биологии открывают широкие перспективы для создания биологически активных веществ и новых лекарственных препаратов, для лечения наследственных заболеваний и осуществления селекции на клеточном уровне. В настоящее время биология стала реальной производительной силой, по развитию которой можно судить об общем уровне развития человеческого общества.

– Открытие витаминов

– Открытие пептидных связей в молекулах белков

– Изучение химической природы хлорофилла

– Описали основные ткани растений

– Открытие структуры ДНК

– Исследование фотосинтеза

– Открытие ключевого этапа в дыхании клеток - цикла трикарбоновых кислот, или цикла Кребса

– Исследование физиологии пищеварения

– Наблюдал клеточное строение тканей

– Наблюдал одноклеточных организмов, клетки животных (эритроциты)

– Открытие ядра в клетке

– Открытие аппарата Гольджи - органоида клетки, метод приготовления микроскопических препаратов нервной ткани, исследование строения нервной системы

– Установил, что одни части зародыша имеют влияние на развитие других его частей

– Сформулировал мутационную теорию

– Создание хромосомной теории наследственности

– Сформулировал закон гомологических рядов в наследственной изменчивости

– Обнаружили усиление мутационного процесса под действием радиоактивного излучения

– Открыл сложную структуру гена

– Открыл значение мутационного процесса в процессах, происходящих в популяциях, для эволюции вида

– Установил филогенетический ряд лошадиных как типовой ряд постепенных эволюционных изменений родственных видов

– Разработали теорию зародышевых листков для позвоночных

– Выдвинул теорию происхождения многоклеточных организмов от общего предка - гипотетического организма фагоцителлы

– Обосновывает наличие в прошлом предка многоклеточных - фагоцителлы и предлагает считать его живой моделью многоклеточное животное - трихоплакса

– Обосновали биологический закон «Онтогенез есть краткое повторение филогенеза»

– Утверждал, что многие органы многофункциональны; в новых условиях среды одна из второстепенных функций может стать более важной и заменить прежнюю главную функцию органа

– Выдвинул гипотезу возникновения билатеральной симметрии живых организмов

7. Назовите известные вам естественные науки, составляющие биологию. Какие из них возникли в конце XX в.?

На границах смежных дисциплин возникали новые биологические направления: вирусология, биохимия, биофизика, биогеография, молекулярная биология, космическая биология и многие другие. Широкое внедрение математики в биологию вызвало рождение биометрии. Успехи экологии, а также всё более актуальные проблемы охраны природы способствовали развитию экологического подхода в большинстве отраслей биологии. На рубеже XX и XXI вв. с огромной скоростью начала развиваться биотехнология - направление, которому, несомненно, принадлежит будущее.

Подумайте! Вспомните!

1. Проанализируйте изменения, произошедшие в науке в XVII-XVIII вв. Какие возможности они открыли перед учёными?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. В XVIII в. шведский натуралист Карл Линней (1707-1778) предложил систему классификации живой природы и ввёл бинарную (двойную) номенклатуру для наименования видов. Карл Эрнст Бэр (Карл Максимович Бэр) (1792-1876), профессор Петербургской медико-хирургической академии, изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства и вошёл в историю науки как основатель эмбриологии. Первым биологом, который попытался создать стройную и целостную теорию эволюции живого мира, стал французский учёный Жан Батист Ламарк (1774-1829). Палеонтологию, науку об ископаемых животных и растениях, создал французский зоолог Жорж Кювье (1769-1832). Огромную роль в понимании единства органического мира сыграла клеточная теория зоолога Теодора Шванна (1810-1882) и ботаника Маттиаса Якоба Шлейдена (1804-1881).

2. Как вы понимаете выражение «прикладная биология»?

4. Проанализируйте материал параграфа. Составьте хронологическую таблицу крупных достижений в области биологии. Какие страны в какие временные периоды были основными «поставщиками» новых идей и открытий? Сделайте вывод о связи между развитием науки и другими характеристиками государства и общества.

Страны, в которых произошли основные биологические открытия относятся к развитым и активно развивающимся странам.

5. Приведите примеры современных дисциплин, возникших на стыке биологии и других наук, не упомянутые в параграфе. Что является предметом их изучения? Попробуйте предположить, какие разделы биологии могут возникнуть в будущем.

Примеры современных дисциплин, возникших на стыке биологии и других наук: палеобиология, биомедицина, социобиология, психобиология, бионика, физиология труда, радиобиология.

Разделы биологии могут возникнуть в будущем: биопрограммирование, ИТ-медицина, биоэтика, биоинформатика, биотехнология.

6. Обобщите информацию о системе биологических наук и представьте её в виде сложной иерархической схемы. Сравните схему, созданную вами, с результатами, которые получились у ваших одноклассников. Одинаковы ли ваши схемы? Если нет, объясните, в чём их принципиальные отличия.

1) Человечество не может существовать без живой природы. Отсюда жизненно необходимо сохранять ее

2) Биология возникла в связи с решением очень важных для людей проблем.

3) Одной из них всегда было более глубокое постижение процессов в живой природе, связанных с получением пищевых продуктов, т.е. знание особенностей жизни растений и животных, их изменение под воздействием человека, способов получения надежного и все более богатого урожая.

4) Человек – продукт развития живой природы. Все процессы нашей жизнедеятельности подобны тем, которые происходят в природе. И поэтому глубокое понимание биологических процессов служит научным фундаментом медицины.

5) Появление сознания, означающее гигантский шаг вперед в самопознании материи, тоже не может быть понято без глубоких исследований живой природы, по крайней мере, в 2-х направлениях – возникновение и развитие мозга как органа мышления (до сих пор загадка мышления остается неразрешенной) и возникновение социальности, общественного образа жизни.

6) Живая природа является источником многих необходимых для человечества материалов и продуктов. Нужно знать их свойства, чтобы правильно использовать, знать, где искать их в природе, как получать.

7) Та вода, которую мы пьем, точнее - чистота этой воды, ее качество тоже определяется в первую очередь живой природой. Наши очистные сооружения лишь завершают тот огромный процесс, который незримо для нас происходит в природе: вода в почве или водоеме многократно проходит через тела мириадов беспозвоночных, фильтруется ими и, освобождаясь от органических и неорганических остатков, становится такой, какой мы знаем ее в реках, озерах и ключах.

8) Проблема качества воздуха и воды – одна из экологических проблем, а экология – биологическая дисциплина, хотя современная экология давно перестала быть только ею и включает в себя много самостоятельных разделов, зачастую принадлежащих к разным научным дисциплинам.

9) В результате освоения человеком всей поверхности планеты, развития сельского хозяйства, промышленности, вырубки лесов, загрязнения материков и океанов все большее число видов растений, грибов, животных исчезает с лица Земли. Исчезнувший вид восстановить невозможно. Он является продуктом миллионов лет эволюции и обладает уникальным генофондом.

10) В данный момент особенно быстро развиваются молекулярная биология, биотехнология и генетика.

8. Организационный проект. Выберите важное событие в истории биологии, годовщина которого приходится на текущий или следующий год. Разработайте программу вечера (конкурса, викторины), посвящённого этому событию.

Викторина:

– Разделение на группы

– Вступительное слово – описание события, историческая справка события, ученого

– Придумать название команд (по теме викторины)

– 1 раунд – простой: например, закончить предложение: Защитная реакция растений на изменение длины светового дня (листопад).

– 2 раунд – двойной: например, найди пару.

– 3 раунд – сложный: например, изобразить схему процесса, нарисовать явление.