Продолжите предложение звуковыми называются колебания. Источники звука

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Прежде чем понять, какие источники звука бывают, задумайтесь, что такое звук? Мы знаем, что свет это излучение. Отражаясь от предметов, это излучение попадает к нам в глаза, и мы можем его видеть. Вкус и запах это маленькие частички тел, которые воспринимают наши соответствующие рецепторы. А звук это что за зверь?

Звуки передаются по воздуху

Вы наверняка видели, как играют на гитаре. Возможно, вы и сами умеете это делать. Важно другое звук в гитаре издают струны, если их дернуть. Все верно. А вот если бы вы могли поместить гитару в вакуум и дернуть струны, то вы бы очень удивились никакого звука гитара не издала бы.

Такие опыты проводились с самыми различными телами, и всегда результат был один никакого звука в безвоздушном пространстве не было слышно. Отсюда следует логичный вывод звук передается по воздуху. Следовательно, звук это нечто, происходящее с частицами веществ воздуха и издающих звук тел.

Источники звука - колеблющиеся тела

Далее. В результате самых разнообразных многочисленных экспериментов удалось установить, что звук возникает вследствие колебания тел. Источниками звука являются тела, которые колеблются. Эти колебания передаются молекулами воздуха и наше ухо, воспринимая эти колебания, интерпретирует их в понятные нам ощущения звука.

Проверить это не сложно. Возьмите стеклянный или хрустальный бокал и поставьте его на стол. Легонько стукните по нему металлической ложечкой. Вы услышите длинный тонкий звук. Теперь дотроньтесь рукой до бокала и стукните еще раз. Звук изменится и станет намного короче.

А теперь пусть несколько человек обхватят руками бокал максимально полностью, вместе с ножкой, стараясь не оставить ни одного свободного участка, кроме совсем маленького места для удара ложечкой. Вновь ударьте по бокалу. Вы почти не услышите никакого звука, а тот, что будет - получится слабым и очень коротким. О чем это говорит?

В первом случае после удара бокал свободно колебался, его колебания передавались по воздуху и достигали наших ушей. Во втором случае большая часть колебаний поглощалась нашей рукой, и звук стал гораздо короче, так как уменьшились колебания тела. В третьем случае практически все колебания тела моментально поглотились руками всех участников и тело почти не колебалось, а следовательно, звука почти не издавало.

То же самое касается всех иных экспериментов, которые вы можете придумать и провести. Колебания тел, передаваясь молекулам воздуха, будут восприниматься нашими ушами, и интерпретироваться мозгом.

Звуковые колебания разной частоты

Итак, звук это колебания. Источники звука передают звуковые колебания по воздуху к нам. Почему же тогда мы слышим далеко не все колебания всех предметов? А потому что колебания бывают разной частоты.

Воспринимаемый человеческим ухом звук это звуковые колебания частотой примерно от 16 Гц до 20 кГц. Дети слышат звуки более высоких частот, чем взрослые, а диапазоны восприятия различных живых существ вообще различаются очень сильно.

Уши очень тонкий и нежный инструмент, подаренный нам природой, поэтому следует беречь его, так как замены и аналога в человеческом теле не существует.

Перейдём к рассмотрению звуковых явлений.

Мир окружающих нас звуков разнообразен - голоса людей и музыка, пение птиц и жужжание пчел, гром во время грозы и шум леса на ветру, звук проезжающих автомобилей, самолётов и других объектов.

Обрати внимание!

Источниками звука являются колеблющиеся тела.

Пример:

Закрепим в тисках упругую металлическую линейку. Если её свободную часть, длина которой подобрана определённым образом, привести в колебательное движение, то линейка будет издавать звук (рис. 1).

Таким образом, колеблющаяся линейка является источником звука.

Рассмотрим изображение звучащей струны, концы которой закреплены (рис. 2). Размытые очертания этой струны и кажущееся утолщение в середине свидетельствуют о том, что струна колеблется.

Если к звучащей струне приблизить конец бумажной полоски, то полоска будет подпрыгивать от толчков струны. Пока струна колеблется, слышен звук; остановим струну, и звук прекращается.

На рисунке 3 изображён камертон - изогнутый металлический стержень на ножке, который укреплён на резонаторном ящике.

Если по камертону ударить мягким молоточком (или провести по нему смычком), то камертон зазвучит (рис. 4).

Поднесём к звучащему камертону лёгкий шарик (стеклянную бусинку), подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей (рис. 5).

Чтобы «записать» колебания камертона с малой (порядка \(16\) Гц) собственной частотой и большой амплитудой колебаний, можно к концу одной его ветви привинтить тонкую и узкую металлическую полоску с остриём на конце. Остриё необходимо загнуть вниз и слегка коснуться им лежащей на столе закопчённой стеклянной пластинки. При быстром перемещении пластинки под колеблющимися ветвями камертона остриё оставляет на пластинке след в виде волнообразной линии (рис. 6).

Волнообразная линия, прочерченная на пластинке остриём, очень близка к синусоиде. Таким образом, можно считать, что каждая ветвь звучащего камертона совершает гармонические колебания.

Различные опыты свидетельствуют о том, что любой источник звука обязательно колеблется, даже если эти колебания незаметны для глаза. Например, звуки голосов людей и многих животных возникают в результате колебаний их голосовых связок, звучание духовых музыкальных инструментов, звук сирены, свист ветра, шелест листьев, раскаты грома обусловлены колебаниями масс воздуха.

Обрати внимание!

Не всякое колеблющееся тело является источником звука.

Например, не издаёт звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если удлинить её свободный конец настолько, чтобы частота его колебаний стала меньше \(16\) Гц.

Человеческое ухо способно воспринимать как звук механические колебания с частотой в пределах от \(16\) до \(20000\) Гц (передающиеся обычно через воздух).

Механические колебания, частота которых лежит в диапазоне от \(16\) до \(20000\) Гц называются звуковыми.

Указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается - некоторые пожилые люди могут слышать звуки с частотами, не превышающими \(6000\) Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше \(20 000\) Гц.

Механические колебания, частота которых превышает \(20 000\) Гц, называются ультразвуковыми, а колебания с частотами менее \(16\) Гц - инфразвуковыми.

Ультразвук и инфразвук распространены в природе так же широко, как и волны звукового диапазона. Их излучают и используют для своих «переговоров» дельфины, летучие мыши и некоторые другие живые существа.

Звук , как мы помним, является упругими продольными волнами. А волны порождаются колеблющимися предметами.

Примеры источников звука : колеблющаяся линейка, один конец которой зажат, колеблющиеся струны, мембрана динамика.

Но не всегда колеблющиеся предметы порождают слышимый ухом звук – если частота их колебаний ниже 16 Гц, то они порождают инфразвук , а если больше 20кГц, то ультразвук .

Ультразвук и инфразвук – с точки зрения физики такие же упругие колебания среды, как и обычный звук, но ухо не способно их воспринять, так как эти частоты слишком далеки от резонансной частоты барабанной перепонки (перепонка просто не может колебаться с такой частотой).

Звуки высокой частоты ощущаются как более тонкие, звуки низкой частоты – как более басовитые.

Если колебательная система совершает гармонические колебания одной частоты, то её звук называется чистым тоном . Обычно источники звука издают звуки сразу нескольких частот – тогда наименьшая частота называется основным тоном , а остальные называются обертонами . Обертона определяют тембр звука – именно из-за них мы легко отличим пианино от скрипки, даже когда основная частота у них одинаковая.

Громкость звука – это субъективное ощущение, позволяющее сравнивать звуки как «более громкие» и «менее громкие». Громкость зависит от многих фактором – он частоты, от длительности, от индивидуальных особенностей слушателя. Но сильнее всего она зависит от звукового давления, которое напрямую связано с амплитудой колебаний того предмета, что издаёт звук.

Единица измерения громкости называется сон .

В практических задачах обычно используют величину, называемую уровень громкости или уровень звукового давления . Измеряется эта величина в белах [Б] или, чаще, в децибелах [дБ] .

Эта величина логарифмически зависит от звукового давления – то есть увеличение давления в 10 раз увеличивает уровень громкости на 1 дБ.

Звук листания газеты – это примерно 20 дБ, будильник – 80 дБ, звук взлетающего самолёта – это 100-120 дБ (на грани болевых ощущений).

Одно из необычных применений звука (точнее ультразвука) – это эхолокация . Можно издать звук и измерить время, через которое придёт эхо. Чем больше расстояние до препятствия, тем больше будет задержка. Обычно такой способ измерения расстояний используется под водой, но летучие мыши применяют его прямо в воздухе.

Расстояние при эхолокации определяется следующим образом:

2r = vt , где v – скорость звука в среде, t – время задержки до эха, r – расстояние до преграды.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.

Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.

Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.

Музыкальный тон. Громкость и высота тона

Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.

Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.

Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спаданием их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.

Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.

Акустический резонанс

Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертон 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.

Шумы

Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3 (квинта), при 3:4 (кванта), 4:5 (большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.

Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).

Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.

Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.