Мультифакториальные заболевания классификация. ДНК–тестирование: моногенные и мультифакториальные болезни

Вместе с тем известен широкий круг заболеваний, таких как гипертоническая болезнь, некоторые формы сахарного диабета, бронхиальная астма, язвенная болезнь желудка, атеросклероз, шизофрения, врожденные пороки развития и многие другие, возникновение которых во многом зависит от факторов внешней среды.

Возникновение широко распространенных заболеваний, которые вносят наибольший вклад в заболеваемость, инвалидизацию и смертность населения, определяется взаимодействием наследственных факторов и разнообразных факторов внешней среды. Эту многообразную группу заболеваний называют болезнями с наследственным предрасположением или мультифакториальной патологией. В основе наследственной предрасположенности к болезням лежит большое генетическое разнообразие (генетический полиморфизм) популяций человека по ферментам, структурным, транспортным белкам и антигенным системам.

Данные о роли наследственности в возникновении подобных заболеваний были получены при различных исследованиях.

1. Семейные исследования. Медицинским работникам хорошо известен факт накопления определенных заболеваний в пределах одной родословной. В этой связи, например, возник термин «онкологическая семья», т. е. ситуация повторных случаев злокачественных заболеваний у родственников больного.

Когда заболевание в значительной мере определяется наследственными факторами, тогда среди родственников пробанда (больного) наблюдается большее число случаев болезни по сравнению с соответствующей выборкой контрольной группы здоровых лиц.

2. Изучение близнецов. Близнецовый метод позволяет получить надежные сведения о наследственной природе заболевания. Если возникновение заболевания в значительной степени зависит от наследственности, то частота конкордантности (совпадения) для монозиготных близнецов должна быть существенно выше, чем у дизиготных близнецов

3. Изучение связи заболевания с генетическими системами. Обнаружение связи, т. е. неслучайного сочетания заболевания с определенной генетической системой (например, группой крови системы АВ0), свидетельствует в пользу причинной роли генетических факторов. Показательной является ситуация с язвенной болезнью двенадцатиперстной кишки и частотой 0(1) группы крови.

4. Результаты экспериментов на модельных животных. У некоторых животных отмечаются такие же заболевания, как и у человека. Это используют для генетического анализа заболевания путем проведения определенных типов скрещивания и наблюдения за потомками.

Особенности болезней с наследственным предрасположением

В отличие от моногенных заболеваний анализ родословных не позволяет диагностировать болезни с наследственной предрасположенностью. Как было показано ранее, моногенные признаки дискретны, поскольку мутантные аллели обусловливают различающиеся фенотипы. Анализ родословных при таких заболеваниях позволяет понять их наследственную природу. При болезнях с наследственным предрасположением соотношение здоровых и больных, как правило, не соответствует менделевскому расщеплению. Это и понятно, поскольку для возникновения мультифакториальных болезней необходимо действие факторов внешней среды. Очевидно, что разные индивиды даже в рамках одной родословной подвержены воздействию различных факторов среды. Например, члены одной семьи могут работать в различных сферах народного хозяйства, контактировать с различными физическими или химическими веществами или биологическими объектами и даже проживать в различных климатических условиях и т. д. Вместе с тем известно, что для мультифакториальных заболеваний вероятность (или риск) развития заболевания у родственников больного гораздо выше, чем в популяции.

Наследственная предрасположенность к различным заболеваниям может иметь различную генетическую основу. В некоторых случаях наследственная предрасположенность определяется одним единственным мутантным геном, в других формируется при совместном действии нескольких генов. В первом случае говорят о моногенной предрасположенности, во втором - о полигенной основе заболевания.

Моногенные болезни с наследственной предрасположенностью характеризуются тем, что предрасположенность к развитию заболевания определяется только одним мутантным геном. Для патологического проявления мутантного гена требуется обязательное действие, как правило, специфического внешнесредового фактора. Такие воздействия могут быть связаны с физическими, химическими, в том числе лекарственными, препаратами и биологическими факторами. Без воздействия специфического (разрешающего) фактора даже при наличии в генотипе мутантного гена заболевание не развивается. Если индивид не обладает подобной мутацией, но подвержен влиянию специфического фактора среды, заболевание также не развивается К настоящему времени известно более 40 генов, мутации которых могут вызывать болезни при действии «проявляющих» факторов среды, специфичных для каждого гена.

Полигенные болезни с наследственным предрасположением определяются сочетанием аллелей нескольких генов. Любой из генов,

входящих в «комплекс предрасположенности», как правило, оказывает малое, но суммирующееся влияние на формирование предрасположенности. Генетики называют подобное влияние аддитивным (англ. additive - добавка). На практике возникают значительные трудности в дифференцировке ситуаций, когда заболевание обусловлено только полимерным характером взаимодействия генов или сочетанием взаимодействия нескольких генов и факторов среды (мультифакториальные заболевания).

Мультифакториальные признаки могут быть прерывными или непрерывными, однако любая подобная болезнь (или признак) всегда определяется взаимодействием гена (или многих генов) и факторов внешней среды.

По многим признакам отмечается непрерывный переход от минимальных значений признака до максимальных. Большинство людей относятся к средней части распределения и только очень незначительное число попадает в крайние части (как слева, так и справа от средней части).

Признаки, для которых характерен подобный тип распределения, обусловлены совместным действием многих генов и многих факторов среды.

Большинство нормальных и патологических характеристик человека являются непрерывными мультифакториальными признаками. Подобные признаки имеют непрерывное распределение в популяции. Так, например, в норме по росту в популяции существует непрерывная изменчивость: от очень низкого роста до очень высокого со средним значением, близким к 170 см (см. рис.)Распределение по росту соответствует так называемому нормальному распределению («колоколообразная» кривая), при котором большинство индивидов находятся вблизи среднего значения. Такое распределение значений любого свойства организма (в данном случае роста) является характеристикой непрерывного мультифакториально обусловленного признака. Описанное распределение характерно для таких признаков, как интеллект, рост, вес, размер эритроцитов, количество лейкоцитов, содержание сахара в крови, окраска кожных покровов и т. д.

В медицине известен целый ряд аномалий и различных заболеваний, в отношении которых допускают, что они возникают у лиц с мультифакториальным предрасположением, превышающим некоторый порог. Приведем примеры некоторых «прерывистых» мультифакториальных заболеваний человека: изолированные врожденные пороки развития - расщелина губы и неба; врожденные пороки сердца; дефекты невральной трубки; пилоростеноз; частые заболевания у взрослых - гипертоническая болезнь; ревматоидный артрит; язвенная болезнь; шизофрения; эпилепсия; бронхиальная астма.

Для перечисленных и подобных патологических состояний отмечается более высокая частота у близких родственников по сравнению с общей популяцией, зависимость риска развития заболевания от степени родства с заболевшим и тяжестью заболевания пробанда. Как правило, в родословных пробандов не наблюдается характерного для моногенных заболеваний распределения больных и здоровых.

Особенности наследования прерывистых мультифакториальных заболеваний хорошо демонстрируются на примере врожденного порока развития - расщелины губы и нёба. Родители ребенка с данным врожденным пороком, как правило, здоровы. Однако рождение больного ребенка свидетельствует, что каждый из них является носителем многих аддитивных, условно аномальных генов, количество которых все же недостаточно для формирования дефекта. Если ребенок случайным образом унаследует критическое число «аномальных» генов, т. е. превысит порог, у него воз никает порок развития - расщелина губы. Предрасположенное! (определяемая генетическими факторами) в данном случае может соответствовать кривой нормального распределения (рис. 5.16). Часть популяции, располагающаяся справа от порогового уровня, соответствует частоте заболевания в популяции, равной для данного порока 0,1 %. Для родителей больного ребенка кривая предрасположенности сдвигается вправо. Это означает, что для родственников первой степени родства частота (или риск) заболевания составляет уже 4 %. Близость к порогу конкретных индивидов в популяции отражается накоплением у них микропризнаков или микроформ, обнаруживаемых в зоне развития порока (таких, например, как расщепление язычка, аномалии зубов и прикуса, асимметрия прикрепления крыльев носа и др.).

Для любого подобного признака или заболевания можно утверждать, что индивиды, расположенные левее от линии порога, распределены по отдельным генетическим классам (в зависимости от генетической конституции). Если в классах, расположенных в левой части кривой, болеет небольшое число людей, то по мере сдвига вправо частота больных увеличивается вплоть до подавляющего большинства в крайней правой части кривой. В медико-биологическом смысле это означает, что при низкой генетической предрасположенности для развития заболевания необходимо очень неблагоприятное сочетание многих средовых факторов. При высокой генетической предрасположенности заболевание способно развиться как бы без видимых предрасполагающих воздействий среды.

Для решения многих теоретических проблем и практических медицинских задач, связанных с мультифакториальными заболеваниями, требуется определить меру участия наследственности и среды в возникновении патологии. Особое значение в изучении сложнонаследуемых признаков и заболеваний имеют генетически идентичные индивиды, которые встречаются в человеческих популяциях - идентичные близнецы.

Биология развития. Понятие о жизненном цикле. Онтогенез и его периодизация. Прямое и непрямое развитие.

Онтогенез - индивидуальное развитие организма от оплодотворения яйцеклетки и до смерти.

Типы онтогенеза:

Прямое развитие

а) откладка яиц с большим количеством желтка (птицы)

б) внутриутробное развитие (млекопитающие).

Непрямое развитие (с метаморфозом)

а) с неполным метаморфозом: яйцо - личинка - взрослая особь

б) с полным метаморфозом: яйцо - личинка - куколка - взрослая особь

Онтогенез подразделяется на следующие периоды:

1) предэмбриональный (предзиготный);

2) эмбриональный (пренатальный);

3) постэмбриональный (постнатальный).

Предэмбриональный период - это период образования и созревания половых клеток. Он весьма важен, так как от содержания в них нормальных и мутантных генов и их комбинации при оплодотворении во многом зависит «качество» будущих потомков.

Эмбриональный период начинается с момента оплодотворения и заканчивается рождением или выходом из яйца. После оплодотворения зигота начинает дробиться, бластомеры постепенно выстраиваются по периферии, образуя однослойный зародыш - бластулу. Затем образуется двухслойный зародыш - гаструла, имеющая эктодерму и энтодерму, первичный рот - бластопор и полость - гастроцель. На следующем этапе закладывается третий слой клеток - мезодерма. Далее из этих пластов клеток образуются ткани и органы, т.е. идет гисто- и органогенез.

В эмбриональном развитии человека выделяют следующие периоды:

1) начальный - I неделя после оплодотворения;

2) зародышевый (зародыш называется эмбрионом) - со II по IX недели после оплодотворения;

3) плодный (зародыш называется плодом) с IX недели до конца эмбрионального периода.

Общая характеристика эмбрионального развития: дробление, гаструляция, гисто- и органогенез. Зародышевые оболочки плода. Взаимоотношение материнского организма и плода.
эмбриогенез человека - это часть его индивидуального развития, онтогенеза. Он тесно связан с прогенезом (образованием половых клеток и ранним постэмбриональным развитием. Эмбриология человека изучает процесс развития человека, начиная с оплодотворения и до рождения. Эмбриогенез человека, продолжающийся в среднем 280 суток (10 лунных месяцев), подразделяется на три периода: начальный (первая неделя развития), зародышевый (вторая-восьмая недели), и плодный (с девятой недели до рождения ребенка). В курсе эмбриологии человека на кафедре гистологии более подробно изучаются ранние стадии развития.

В процессе эмбриогенеза можно выделить следующие основные стадии:

1. Оплодотворение ~ слияние женской и мужской половых клеток. В результате образуется новый одноклеточный организм-зигота.

2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта стадия заканчивается образованием многоклеточного зародыша, имеющего у человека форму пузырька-бластоцисты, соответствующей бластуле других позвоночных.

3. Гаструляция. В результате деления, дифференцировки, взаимодействия и перемещения клеток зародыш становится многослойным. Появляются зародышевые листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных тканей и органов.

4. Гистогенез, органогенез, системогенез. В ходе дифференцировки зародышевых листков образуются зачатки тканей, формирующие органы и системы организма человека.

1.1. Дистантное взаимодействие, в котором важную роль играют химические вещества гиногамоны 1 и II яйцеклетки и андрогомоны 1 и II спермиев. Гиногамоны 1 активизируют двигательную активность снермиев, а андрогамоны 1. напротив, подавляют. Гиногамоны II (фертилизины) вызывают склеивание спермиев при взаимодействии с андрогамоном II, встроенным в цитолемму спермия и предотвращают проникновение многих сперматозоидов в яйцеклетку.

1.2. Контактное взаимодействие половых клеток. Под влиянием сперматолизинов акросомы спермиев происходит слияние плазматических мембран и плазмогамия - объединение цитоплазмы контактирующих гамет,

1.3. Третья фаза - это проникновение в ооплазму (цитоплазму яйцеклетки) спермия с последующей кортикальной реакцией - уплотнением периферической части ооплазмы и формированием оболочки оплодотворения.

Различают оплодотворение наружное (например, у амфибий) и внутреннее (у птиц, млекопитающих, человека), а также полиспермное, когда в яйцеклетку проникают несколько спермиев (например, у птиц) и моноспермное (у млекопитающих, человека).

Оплодотворение у человека внутреннее, моноспермное. Оно происходит в ампулярной части маточной трубы.

Дробление зиготы начинается к концу первых суток в яйцеводах по мере продвижения оплодотворенной яйцеклетки к матке и заканчивается в матке. Дробление зависит от типа яйцеклетки, от количества желтка и его распределения. Различают следующие типы дробления:

2.1. Полное, равномерное (у первично изолецитальных яйцеклеток ланцетника, Полностью дробится зигота на равные части - бластомеры.

2.2. Полное, неравномерное (у мезолецитальных яйцеклеток амфибий). Зигота дробится полностью, но бластомеры образуются неодинаковые (мелкие на анимальном полюсе и крупные на вегетативном, где сосредоточен желток).

3.3. Частичное или меробластическое (у полилецитальных яйцеклеток птиц). Дробится лишь часть анимального полюса яйцеклетки, свободного от желтка.

4.4.Полное,неравномерное,асинхронное (у вторично изолецитальных яйцеклеток плацентарных млекопитающих и человека).

Гаструляция также является критическим периодом в развитии. Она приводит к образованию многослойного зародыша (гаструла), Способы образования гаструлы различны:

3.1. Инвагинация-впячивание (у ланцетника).

3.2. Эпиболия-обрастание (у амфибий эпиболия идет совместно с частичной инвагинацией).

3.3. Деляминация - расщепление (у птиц, млекопитающих, человека).

3.4. Иммиграция - выселение, перемещение (у птиц, млекопитающих, человека).

зародышевых листков и закладка осевых основных зачатков органов.

ДИФФЕРЕНЦИРОВКА ЗАРОДЫШЕВЫХ ЛИСТКОВ.

Дифференцировка - это изменения в структуре клеток, связанные со специализацией их функций и обусловленные активностью определенных генов. Различают 4 этапа дифференцировки:

1. Оотипическая дифференцировка на стадии зиготы представлена предположительными, презумптивными зачатками - участками оплодотворенной яйцеклетки.

2. Бластомерная дифференцировка на стадии бластулы заключается в появлении неодинаковых бластомеров (например, бластомеры крыши, дна краевых зон у некоторых животных).

3. Зачатковая дифференцировка на стадии ранней гаструлы Возникают обособленные участки - зародышевые листки.

4. Гистогенетическая дифференцировка на стадии поздней гаструлы. В пределах одного листка появляются зачатки различных тканей (например, в сомитах мезодермы). Из тканей формируются зачатки органов и систем. В процессе гаструляции, дифференцировки зародышевых листков появляются осевой комплекс зачатков органов.

Внезародышевые органы (провизорные, временные или зародышевые оболочки), обеспечивающие развитие зародыша. В эволюции появляются впервые у рыб (желточный мешок). У птиц имеются следующие внезародышевые органы: амнион, сероза, желточный мешок и аллантоис. Амнион - водная оболочка, серозная - орган дыхания. Образуются эти две оболочки у птиц путем смыкания амниотических складок. Желточный мешок выполняет у птиц трофическую и кроветворную функции, а аллантоис -орган выделения и газообмена у птиц.

В эмбриогенезе человека образуется пять внезародышевых органов: амнион, желточный мешок, хорион, формирующий плаценту и аллантоис. Амнион, создающий водную среду у человека, образуется без амниотических складок. Желточный мешок у человека практически утрачивает трофическую и выполняет в основном кроветворную функцию и образования первичных половых клеток. Аллантоис. редуцирующийся на втором месяце является проводником кровеносных сосудов к хориону. Хорошо развитый хорион у человека формирует плаценту, за счет которой устанавливается связь зародыша и матери.

Основные этапы эмбриогенеза. Зародышевые листки и их производные. Понятие об осевых органах

Тема 7.3 Мультифакториальные болезни

Рассмотренные в предыдущих разделах генные и хромосомные болезни полностью определяются патологической наследственностью, т. е. мутациями. Вместе с тем известен широкий круг заболеваний, таких как гипертоническая болезнь, некоторые формы сахарного диабета, бронхиальная астма, язвенная болезнь желудка, атеросклероз, шизофрения, врожденные пороки развития и многие другие, возникновение которых во многом зависит от факторов внешней среды.

Возникновение широко распространенных заболеваний, которые вносят наибольший вклад в заболеваемость, инвалидизацию и смертность населения, определяется взаимодействием наследственных факторов и разнообразных факторов внешней среды. Эту многообразную группу заболеваний называют болезнями с наследственным предрасположением или мультифакториальной патологией. В основе наследственной предрасположенности к болезням лежит большое генетическое разнообразие (генетический полиморфизм) популяций человека по ферментам, структурным, транспортным белкам и антигенным системам.

Данные о роли наследственности в возникновении подобных заболеваний были получены при различных исследованиях.

1. Семейные исследования. Медицинским работникам хорошо известен факт накопления определенных заболеваний в пределах одной родословной. В этой связи, например, возник термин «онкологическая семья», т. е. ситуация повторных случаев злокачественных заболеваний у родственников больного.

Когда заболевание в значительной мере определяется наследственными факторами, тогда среди родственников пробанда (больного) наблюдается большее число случаев болезни по сравнению с соответствующей выборкой контрольной группы здоровых лиц.

2. Изучение близнецов. Близнецовый метод позволяет получить надежные сведения о наследственной природе заболевания. Если возникновение заболевания в значительной степени зависит от наследственности, то частота конкордантности (совпадения) для монозиготных близнецов должна быть существенно выше, чем у дизиготных близнецов

3. Изучение связи заболевания с генетическими системами. Обнаружение связи, т. е. неслучайного сочетания заболевания с определенной генетической системой (например, группой крови системы АВ0), свидетельствует в пользу причинной роли генетических факторов. Показательной является ситуация с язвенной болезнью двенадцатиперстной кишки и частотой 0(1) группы крови.

4. Результаты экспериментов на модельных животных. У некото¬рых животных отмечаются такие же заболевания, как и у человека. Это используют для генетического анализа заболевания путем проведения определенных типов скрещивания и наблюдения за потомками.

Особенности болезней с наследственным предрасположением

В отличие от моногенных заболеваний анализ родословных не позволяет диагностировать болезни с наследственной предрасположенностью. Как было показано ранее, моногенные признаки дискретны, поскольку мутантные аллели обусловливают различающиеся фенотипы. Анализ родословных при таких заболеваниях позволяет понять их наследственную природу. При болезнях с наследственным предрасположением соотношение здоровых и больных, как правило, не соответствует менделевскому расщеплению. Это и понятно, поскольку для возникновения мультифакториальных болезней необходимо действие факторов внешней среды. Очевидно, что разные индивиды даже в рамках одной родословной подвержены воздействию различных факторов сре¬ды. Например, члены одной семьи могут работать в различных сферах народного хозяйства, контактировать с различными физическими или химическими веществами или биологическими объектами и даже проживать в различных климатических услови¬ях и т. д. Вместе с тем известно, что для мультифакториальных заболеваний вероятность (или риск) развития заболевания у родственников больного гораздо выше, чем в популяции.

Наследственная предрасположенность к различным заболеваниям может иметь различную генетическую основу. В некоторых случаях наследственная предрасположенность определяется одним единственным мутантным геном, в других формируется при совместном действии нескольких генов. В первом случае говорят о моногенной предрасположенности, во втором - о полигенной основе заболевания.

Моногенные болезни с наследственной предрасположенностью характеризуются тем, что предрасположенность к развитию заболевания определяется только одним мутантным геном. Для патоло¬гического проявления мутантного гена требуется обязательное действие, как правило, специфического внешнесредового фактора. Такие воздействия могут быть связаны с физическими, химическими, в том числе лекарственными, препаратами и биологическими факторами. Без воздействия специфического (разрешающего) фактора даже при наличии в генотипе мутантного гена заболевание не развивается. Если индивид не обладает подобной мутацией, но подвержен влиянию специфического фактора среды, заболевание также не развивается К настоящему времени известно более 40 генов, мутации которых могут вызывать болезни при действии «проявляющих» факторов среды, специфичных для каждого гена.

Полигенные болезни с наследственным предрасположением определяются сочетанием аллелей нескольких генов. Любой из генов,

Входящих в «комплекс предрасположенности», как правило, оказывает малое, но суммирующееся влияние на формирование предрасположенности. Генетики называют подобное влияние аддитивным (англ. additive - добавка). На практике возникают значительные трудности в дифференцировке ситуаций, когда заболевание обус¬ловлено только полимерным характером взаимодействия генов или сочетанием взаимодействия нескольких генов и факторов среды (мультифакториальные заболевания).

Мультифакториальные признаки могут быть прерывными или непрерывными, однако любая подобная болезнь (или признак) всегда определяется взаимодействием гена (или многих генов) и факторов внешней среды.

По многим признакам отмечается непрерывный переход от минимальных значений признака до максимальных. Большинство людей относятся к средней части распределения и только очень незначительное число попадает в крайние части (как слева, так и справа от средней части).

Признаки, для которых характерен подобный тип распределения, обусловлены совместным действием многих генов и многих факторов среды.

Большинство нормальных и патологических характеристик че¬ловека являются непрерывными мультифакториальными признаками. Подобные признаки имеют непрерывное распределение в популяции. Так, например, в норме по росту в популяции существует непрерывная изменчивость: от очень низкого роста до очень высокого со средним значением, близким к 170 см (см. рис.)Распределение по росту соответствует так называемому нормальному распределению («колоколообразная» кривая), при котором большинство индивидов находятся вблизи среднего значения. Такое распределение значений любого свойства организма (в данном случае роста) является характеристикой непрерывного мультифакториально обусловленного признака. Описанное распределение характерно для таких признаков, как интеллект, рост, вес, размер эритроцитов, количество лейкоцитов, содержание сахара в крови, окраска кожных покровов и т. д.

В медицине известен целый ряд аномалий и различных заболеваний, в отношении которых допускают, что они возникают у лиц с мультифакториальным предрасположением, превышающим некоторый порог. Приведем примеры некоторых «прерывистых» мультифакториальных заболеваний человека: изолированные врожденные пороки развития - расщелина губы и неба; врожденные пороки сердца; дефекты невральной трубки; пилоростеноз; частые заболевания у взрослых - гипертоническая болезнь; рев¬матоидный артрит; язвенная болезнь; шизофрения; эпилепсия; бронхиальная астма.

Для перечисленных и подобных патологических состояний от¬мечается более высокая частота у близких родственников по срав¬нению с общей популяцией, зависимость риска развития заболе¬вания от степени родства с заболевшим и тяжестью заболевания пробанда. Как правило, в родословных пробандов не наблюдается характерного для моногенных заболеваний распределения боль¬ных и здоровых.

Особенности наследования прерывистых мультифакториальных заболеваний хорошо демонстрируются на примере врожденного порока развития - расщелины губы и нёба. Родители ребенка с данным врожденным пороком, как правило, здоровы. Однако рож¬дение больного ребенка свидетельствует, что каждый из них яв¬ляется носителем многих аддитивных, условно аномальных ге¬нов, количество которых все же недостаточно для формирования дефекта. Если ребенок случайным образом унаследует критическое число «аномальных» генов, т. е. превысит порог, у него воз никает порок развития - расщелина губы. Предрасположенное! (определяемая генетическими факторами) в данном случае мо¬жет соответствовать кривой нормального распределения (рис. 5.16). Часть популяции, располагающаяся справа от порогового уров¬ня, соответствует частоте заболевания в популяции, равной для данного порока 0,1 %. Для родителей больного ребенка кривая предрасположенности сдвигается вправо. Это означает, что для родственников первой степени родства частота (или риск) забо¬левания составляет уже 4 %. Близость к порогу конкретных инди¬видов в популяции отражается накоплением у них микропризнаков или микроформ, обнаруживаемых в зоне развития порока (таких, например, как расщепление язычка, аномалии зубов и прикуса, асимметрия прикрепления крыльев носа и др.).

Для любого подобного признака или заболевания можно утверждать, что индивиды, расположенные левее от линии порога, распределены по отдельным генетическим классам (в зависимости от генетической конституции). Если в классах, рас¬положенных в левой части кривой, болеет небольшое число лю¬дей, то по мере сдвига вправо частота больных увеличивается вплоть до подавляющего большинства в крайней правой части кривой. В медико-биологическом смысле это означает, что при низкой генетической предрасположенности для развития заболевания необходимо очень неблагоприятное сочетание многих средовых факторов. При высокой генетической предрасположенности заболевание способно развиться как бы без видимых предрасполагаю¬щих воздействий среды.

Для решения многих теоретических проблем и практических медицинских задач, связанных с мультифакториальными заболеваниями, требуется определить меру участия наследственности и среды в возникновении патологии. Особое значение в изучении сложнонаследуемых признаков и заболеваний имеют генетически идентичные индивиды, которые встречаются в человеческих популяциях - идентичные близнецы.

Вопросы и задания

1. Составьте классификацию форм наследственной патологии человека.

2. Что такое генные болезни? Какие методы можно использовать для анализа наследования моногенных заболеваний? Объясните причины возникновения генных болезней человека.

3. Составьте классификацию генных болезней человека. Приведите примеры известных вам генных заболеваний.

4. Сделайте символическую запись генотипов следующих индивидуумов и определите вероятность появления у них соответствующих патологических признаков: 1) мужчина, гетерозиготный по гену фенилкетонурии (аутосомно-рецессивный тип наследования); 2) женщина, гомозиготная по гену фенилкетонурии; 3) мужчина, гетерозиготный по гену ахондроплазии (аутосомно-доминантный тип наследования); 4) женщина, гетерозиготная по гену гемофилии (X-сцепленный, рецессивный тип наследования); 5) мужчина, гемизиготный по гену гемофилии.

5. Перечислите особенности родословных схем при наследовании в семьях следующих типов моногенных заболеваний: 1) аутосомно-доминантный; 2) аутосомно-рецессивный; 3) X-сцепленный, доминантный; 4) X-сцепленный, рецессивный; 5) Y-сцепленный.

6. Что такое хромосомные болезни человека? Какие методы используются для изучения этих болезней?

7. Составьте классификацию и приведите примеры известных вам хромосомных болезней человека. Объясните цитологическую основу (механизм) возникновения этих болезней.

8. Сделайте заключение о нормальном либо патологическом состоянии и половой принадлежности людей со следующими кариотипами: 1) 46, XX; 2) 46, XY; 3) 47, ХХ,+21; 4) 47, XX,+21; 5) 47, ХХ,+13; 6) 47, ХY,+18; 7) 45, X; 8) 47, XXX; 9) 47, ХХY; 10) 48, ХХХY.

9. Сделайте символическую запись кариотипов следующих индивиду¬умов: 1) нормальный мужчина; 2) нормальная женщина; 3) мальчик с синдромом Дауна (простая трисомия); 4) мальчик с синдромом Патау; 5) девочка с синдромом Эдвардса; 6) индивидуум с синдромом Клайн-фельтера; 7) индивидуум с синдромом Шерешевского -Тернера; 8) де¬вочка с синдромом «кошачьего крика».

10. Сделайте заключение о возможном кариотипе индивидуума на основании сведений о его вторичных половых признаках и содержании телец полового хроматина в ядрах клеток слизистой оболочки щеки: 1) фенотип женский, более 20 % клеток имеют одно тельце полового хроматина; 2) фенотип женский, половой хроматин не обнаружен; 3) фенотип женский, более 20 % клеток имеют два тельца хроматина; 4) фенотип мужской, хроматин обнаружен у 1 % исследованных клеток; 5) фенотип мужской, более 20 % клеток имеют одно тельце полового хроматина; 6) фенотип мужской, более 20 % клеток имеют два тельца хроматина.

11. Что такое мультифакториальные болезни человека? Назовите известные вам примеры мультифакториальных заболеваний. Какие методы могут быть использованы для изучения этих болезней?

12. Как можно с помощью близнецового метода оценить роль наследственности и факторов среды в развитии мультифакториальных заболеваний?

Глубокую мысль, высказанную Л. Н. Толстым в начале романа «Анна Каренина» - «Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему», - в полной мере можно отнести к семьям, имеющим здоровых и больных детей. Действительно, каждая семья с ребенком, болеющим наследственным заболеванием, несчастлива по-своему: длительная тяжелейшая болезнь, ранняя смерть, умственное недоразвитие и т. д. Любой человек хочет иметь здоровое потомство. Наблюдаемое во всем мире и в России уменьшение числа детей в семье (1 - 2 ребенка) особенно обостряет вопрос о рождении только здорового ребенка.

Вся наследственная патология определяется генетическим «грузом», который возникает по двум причинам. Первая причина - сегрегация, т. е. передача патологического гена потомству от больных родителей или носителей патологического гена. Вторая - «свежая» или вновь возникшая мутация. В этом случае изменение наследственного аппарата происходит в половых клетках здоровых родителей. В результате этого гамета с «новой» мутацией дает начало развитию больного ребенка, хотя родители не имели этой мутации.

Медицинские последствия «груза» наследственной патологии у человека проявляются повышенной смертностью, сокращением продолжительности жизни, увеличением числа больных наследственными заболеваниями, увеличением объема медицинской помощи.

Около трети всей детской смертности в развитых странах обусловлено наследственными болезнями и врожденными пороками развития. Как правило, наследственные болезни имеют хроническое течение. Больные с наследственной патологией нуждаются в ранней и постоянной медицинской помощи. В этой связи перед индивидуумом, семьей и обществом возникает целый ряд моральных, экономических, социальных и правовых проблем.

Несмотря на значительные успехи, достигнутые в понимании этиологии и патогенеза многих наследственных и врожденных заболеваний, достижения в лечении этих заболеваний еще не очень впечатляющие. Вот почему профилактика наследственных болезней должна занимать определяющее в работе медицинского персонала и в организации здравоохранения.

^ Тема 8 ВИДЫ ПРОФИЛАКТИКИ

Профилактика - это комплекс мероприятий, направленных на предупреждение возникновения и развития наследственных и врожденных болезней. Различают первичную, вторичную и третичную профилактики наследственной патологии.

Первичная профилактика наследственных болезней - это комплекс мероприятий, направленных на предупреждение зачатия больного ребенка. Реализуется это планированием деторождения и улучшением среды обитания человека.

Планирование деторождения включает три основные позиции.

1. Оптимальный репродуктивный возраст, который для женщин находится в пределах 21-35 лет (более ранние или поздние беременности увеличивают вероятность рождения ребенка с врожденной патологией).

2. Отказ от деторождения в случаях высокого риска наследственной и врожденной патологии (при отсутствии надежных методов дородовой диагностики, лечения, адаптации и реабилитации больных).

3. Отказ от деторождения в браках с кровными родственниками и между двумя гетерозиготными носителями патологического гена.

Улучшение среды обитания человека направлено главным образом на предупреждение вновь возникающих мутаций. Осуществляется это жестким контролем содержания мутагенов и тератогенов в среде обитания человека.

Вторичная профилактика осуществляется за счет прерывания беременности в случае высокой вероятности заболевания у плода или установления диагноза пренатально. Прерывание может происходить только с согласия женщины в установленные сроки. Основанием для элиминации эмбриона или плода является наследственная болезнь. Прерывание беременности - решение явно не самое лучшее, но в настоящее время единственно пригодное при большинстве тяжелых и смертельных генетических дефектов.

Третичная профилактика наследственных болезней направлена на предотвращение развития заболевания у родившегося ребенка или его тяжелых проявлений. Эту форму профилактики можно назвать нормокопированием, т. е. развитие здорового ребенка с патологическим генотипом. Третичная профилактика некоторых форм наследственной патологии может совпадать с лечебными мероприятиями в общемедицинском смысле. Предотвращение развития наследственного заболевания (нормокопирование) включает в себя комплекс лечебных мероприятий, которые можно осуществлять внутриутробно или после рождения.

Для некоторых наследственных заболеваний (например, резус-несовместимость, некоторые ацидурии, галактоземия) возможно внутриутробное лечение.

Наиболее широко предотвращение развития заболевания используется в настоящее время для коррекции (лечения) после рождения больного. Типичным примером третичной профилактики могут быть фенилкетонурия, гипотиреоз. Можно еще назвать целиакию - заболевание, которое развивается в начале прикорма ребенка манной кашей. У таких детей имеется непереносимость злакового белка глютена. Исключение таких белков из пищи полностью гарантирует ребенка от тяжелейшей патологии желудочно-кишечного тракта.

^ ОРГАНИЗАЦИОННЫЕ ФОРМЫ ПРОФИЛАКТИКИ

Профилактика осуществляется в нескольких организационных формах:

Медико-генетическое консультирование;

Периконцепционная профилактика;

Пренатальная и преиконцепционная диагностика;

Преклиническая диагностика;

Диагностика гетерозиготных состояний;

Диспансеризация семей с наследственной патологией;

Проверка на мутагенность и гигиеническая регламентация факторов среды;

Пропаганда медико-генетических знаний среди медицинского персонала и населения.

В настоящее время в практическом здравоохранении в России программы профилактики врожденной и наследственной патологии реализуются в медико-генетическом консультировании, пренатальной диагностике, неонатальном скрининге наследственных болезней обмена. Остальные формы еще не введены.

Медико-генетическое консультирование

Медико-генетическое консультирование представляет собой специализированную медицинскую помощь населению и является в настоящее время основным видом профилактики врожденной и наследственной патологии. Генетическое консультирование - это врачебная деятельность, направленная на предупреждение появления больных с врожденной и наследственной патологией.

В медико-генетическую консультацию, как правило, обращаются:

Здоровые родители, у которых родился больной ребенок;

Семьи, где болен один из супругов, и родителей интересует прогноз здоровья будущих детей;

Семьи практически здоровых детей, у которых по линии одного или обоих родителей имеются родственники с наследственной патологией;

Родители, желающие узнать прогноз здоровья братьев и сестер больного ребенка (не возникнет ли аналогичное заболевание у них в дальнейшем, а также у их детей);

Семьи, в которых супруги являются кровными родственниками;

Беременные женщины с повышенным риском рождения аномального ребенка (пожилой возраст, перенесенное на ранних сроках беременности серьезное заболевание, прием лекарственных препаратов, работа на вредном предприятии и др).

У родителей и медицинских работников должна быть настороженность в отношении наследственной патологии, когда у ребенка обнаруживаются следующие признаки:

Задержка (нарушение) физического или психического развития;

Врожденные пороки развития внутренних и наружных органов;

Специфический цвет или запах мочи и тела; частые инфекционные заболевания; изменения кожи, волос, ногтей, зубов; аномалии скелета;

Патология органов зрения, катаракта, атрофии; увеличение печени и селезенки.

Кроме перечисленных выше признаков, заподозрить наследственную патологию и направить семью на медико-генетическую консультацию необходимо: при аналогичных случаях заболевания у родственников; при наличии самопроизвольных абортов, мертворождений, детей с пороками развития; в случаях внезапной смерти; родителей в возрасте (женщин старше 35, мужчин старше 45 лет); при первичном бесплодии.

При наличии любого из перечисленных состояний крайне важно обратиться к врачу-генетику, который поможет исключить или подтвердить наследственное заболевание и определит нужные рекомендации.

При консультировании возникают не только генетические, диагностические, но и этические вопросы: вмешательство в тайну семьи при составлении родословной; обнаружение носителя патологического гена; несовпадение паспортного и биологического отцовства; необходимость стерилизации и искусственного оплодотворения при высоком генетическом риске.

Медицинские работники, особенно средний медицинский персонал, проводящий много времени с больным и членами его семьи, должны быть осторожны в интерпретации любых данных.

Пренатальная диагностика

Пренатальная диагностика - это дородовое определение врожденной или наследственной патологии у плода. С организационной точки зрения все беременные (без специальных показаний) должны обследоваться для исключения наследственной патологии просеивающими методами (ультразвуковое обследование, биохимические исследования сыворотки беременных).

Особое внимание должно быть уделено проведению специальных методов дородовой диагностики по строгим показаниям для исключения конкретных наследственных заболеваний, уже име¬ющихся в данной семье.

Показаниями для проведения пренатальной диагностики являются:

Наличие в семье точно установленного наследственного заболевания;

Возраст матери старше 35 лет, отца старше 45 лет;

Наличие у матери Х-сцепленного рецессивного патологического гена;

Беременные, имеющие в анамнезе спонтанные аборты, мертворождения неясного генеза, детей с множественными врожденными пороками развития и с хромосомной патологией;

Наличие структурных перестроек хромосом у одного из родителей;

Гетерозиготность обоих родителей при аутосомно-рецессивных заболеваниях.

В пренатальной диагностике используют неинвазивные и инвазивные методы.

Неинвазивные методы пренатальной диагностики. Ультразвуковое исследование плода становится обязательным компонентом обследования беременных женщин. С развитием и совершенствованием оборудования и методики УЗИ становится возможной диагностика хромосомных болезней и врожденных пороков развития во втором триместре беременности. С помощью УЗИ диагностируются пороки развития конечностей, дефекты невральной трубки, дефекты передней брюшной стенки, гидро- и микроцефалия, пороки сердца, аномалии почек.

Для диагностики врожденной и наследственной патологии УЗИ необходимо проводить в динамике на ранних и более поздних сроках беременности, по меньшей мере два раза (12 - 14 недели и 20-21 недели беременности).

Биохимические методы включают определение уровня альфа-фетопротеина, хорионического гонадотропина, несвязанного эстрадиола в сыворотке крови беременных. Эти методы являются просеивающими как предварительные для выявления врожденных пороков развития (дефекты невральной трубки, дефекты передней брюшной стенки), многоплодной беременности, внутриутробной гибели плода, маловодия, угрозы прерывания, хромосомных заболеваний плода и других патологических состояний. Оптимальные сроки исследования - 17-20 недель беременности.

Инвазивные методы. К инвазивным методам относятся: амнио-центез, хорионбиопсия и кордоцентез, плацентоцентез и фето-скопия.

Амниоцентез - процедура получения амниотической жидкости (15-20 мл) путем пункции амниотического мешка через переднюю брюшную стенку или через влагалище на 16 -20-й неделе беременности. После 20-й недели количество «жизнеспособных» клеток значительно уменьшается. Клетки плода, содержащиеся в плодной жидкости, выращиваются на специальных средах для последующей диагностики всех хромосомных болезней. Диагностика генных болезней молекулярно-генетическими методами возможна и без культивирования клеток. При проведении амниоцентеза возможны осложнения (гибель плода, инфицирование полости матки). Однако этот риск не превышает 0,5 %.

Хорионбиопсия проводится на 7- 11-й неделях беременности с целью получения клеток для пренатальной диагностики. Клетки ворсин хориона несут такую же генетическую информацию, как и клетки плода. Анализ этих клеток цитогенетическими, биохимическими или молекулярно-генетическими методами используется для дородовой диагностики многих наследственных болезней.

Кордоцентез - взятие крови из пупочной вены плода проводится на 15-22-й неделях беременности, некоторые специалисты проводят эту процедуру на более ранних сроках. Культивирование лейкоцитов дает возможность провести цитогенетический анализ. Кроме того, по образцам крови возможна биохимическая и молекулярно-генетическая диагностика наследственных болезней без культивирования.

Фетоскопия используется при проведении биопсии кожи или печени, либо при переливании крови плоду. С ее помощью может осуществляться прямое наблюдение плода, диагностика заболеваний кожи, нарушений развития половых органов, дефектов лица, конечностей и пальцев. Однако в настоящее время фетоскопия как метод дородовой диагностики применяется редко.

Неонатальный скрининг наследственных болезней обмена

Наиболее успешно программы ранней (доклинической) диагностики наследственных болезней были использованы в отношении наследственных болезней обмена веществ у новорожденных. Их осуществление базируется на массовом характере обследования, безотборном подходе к обследованию, двухэтапном подходе к диагностике.

Массовому просеиванию подлежат наследственные заболевания обмена:

Приводящие к гибели или стойкой утрате трудоспособности и инвалидизации (без раннего выявления и своевременного лече¬ния);

Встречающиеся с частотой не реже чем 1:20 000 новорожденных;

Для которых разработаны адекватные и экономичные методы предварительного (скрининг) выявления и эффективные подтверждающие методы;

Для которых разработаны методы лечения, реабилитации и адаптации.

В европейских странах массовый скрининг проводится для доклинического выявления фенилкетонурии, гипотиреоза, врожденной гиперплазии надпочечников, галактоземии и муковисцидоза.

В России массовое просеивание новорожденных на фенилкето-нурию осуществляется почти повсеместно и на гипотиреоз в отдельных регионах.

Периконцепционная профилактика - это комплекс мероприятий для обеспечения оптимальных условий для созревания зародышевых клеток, образования зиготы, имплантации зародыша и его раннего развития.

Показаниями для периконцепционной профилактики являются:

Наличие в семье риска по врожденным порокам развития, таким как дефекты невральной трубки, расщелины губы и нёба, пороки сердца и др.;

Привычное невынашивание беременности, рождение детей с гипотрофией;

Сахарный диабет и некоторые другие эндокринопатии;

Хроническая соматическая патология у одного из родителей;

Работа одного из супругов на вредном производстве.

Периконцепционная профилактика возможна при условии, что беременность не случайная, а супруги ее планируют. За 3 - 4 мес до зачатия супруги проходят подробное медицинское обследование, в том числе на наличие инфекции. Профилактическое лечение с применением специального комплекса витаминов, микроэлементов супруги проходят за 2-3 мес. до зачатия. Желательно соблюдать сбалансированное питание. При наступлении беременности женщина проходит обследование по програме пренатальной диагностики.

^ ЗНАЧЕНИЕ ПРОФИЛАКТИКИ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Одной из главных задач медицинской генетики является профилактика наследственных болезней. Людям, вступившим в XXI в., необходимо знать, на каком этапе находится данная наука и каковы ее достижения. В настоящее время появилась возможность предотвращать многие наследственные заболевания. Необходимо, чтобы каждый знал, чем он рискует и какими возможностями выбора располагает.

По мере повышения биологической и генетической образованности широких масс населения родители или молодые супружеские пары, еще не имеющие детей, все чаще обращаются в медико-генетическую консультацию. Среднему медицинскому персоналу в этой связи отводится немаловажная роль в плане ознакомления населения с возможностью проведения дородового консультирования.

Однако это небольшая часть того, что можно реально осуществлять в женских консультациях, на педиатрических участках или в других структурах здравоохранения. Так, пропаганда здорового образа жизни актуальна не только во время беременности, но и на всех этапах жизнедеятельности человека, начиная с детского возраста. Знания о том, что курение и употребление алкоголя матерью или отцом будущего ребенка повышают вероятность рождения младенца с врожденной патологией, должны пропагандироваться среди детского и взрослого населения. Загрязнения воды, воздуха, пищевых продуктов веществами, обладающими мутагенным или канцерогенным действием (вызывающими возникновение мутаций), может способствовать появлению наследственных заболеваний.

Таким образом, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных.

Вопросы и задания

1. Дайте определение термину «профилактика».

2. Назовите пути реализации первичной профилактики.

3. С помощью каких мероприятий реализуется вторичная профилактика?

4. Как проявляется наследственная патология?

5. Назовите организационные формы профилактики.

6. Что такое медико-генетическое консультирование?

7. Каковы задачи медико-генетического консультирования?

8. Перечислите причины обращаемости в медико-генетическую консультацию.

9. Перечислите признаки, на основании которых можно заподозрить наследственную патологию.

10. Что такое пренатальная диагностика?

11. Назовите показания для проведения пренатальной диагностики.

12. Перечислите неинвазивные и инвазивные методы диагностики.

13. Назовите критерии отбора наследственных заболеваний для просеивающих программ диагностики наследственных болезней у новорожденных.

14. Перечислите наследственные заболевания, по которым проводится массовый скрининг в России и западных странах.

15. Назовите показания для периконцепционной профилактики.

16. В чем заключается периконцепционная профилактика?

Приложение1

Краткая характеристика некоторых моногенных наследственных заболеваний


Заболевание

Минимальный диагностический критерий

Тип наследо­вания

Наиболее частые обращения

Аарскога синдром

Гипертелоризм, брахидактилия, кожная синдактилия, низкий рост,

«шалевидная» мошонка


АД или

Эндокринолог

Аглоссии-адактилии синдром (синдром Ханхарта)

Микрогения, микро- или

Аглоссия, редукционные

пороки конечностей


АД

Хирург

Адреногенитальный синдром

Прогрессирующая вирилизация, двойственное

строение половых органов, ускоренное соматическое развитие


АР

Эндокринолог

Акроцефало-

синдактилия


Акроцефалия, синдактилия различной степени

АД

Нейрохирург,

хирург


Альбинизм

Глазокожный

тиразиназо негативный


Депигментация кожи,

Волос, глаз, светобоязнь,

нистагм


АР

Офтальмолог

Альпорта синдром (нефрит

наследственный с глухотой)


Снижение слуха, гематурия и протеинурия

АД,

Нефролог, отоляринголог

Атаксия-телеангиэктазия (синдром Луи-Бар)

Атаксия, телеангиэкта-зия, рецидивирующие инфекции верхних дыхательных путей, снижение уровня IgA

АР

Невролог

Барде-Бидля синдром

Ожирение, гипогонадизм, умственная отсталость, слепота, полидактилия

АР

Эндокринолог, психоневролог, офтальмолог

Беквита-Виде-мана синдром

Омфалоцеле, макроглоссия, макросомия

АД

Хирург

Вильямса синдром (синдром «лица эльфа»)

Необычное лицо, надклапанный стеноз аорты, умственная отсталость, гиперкальциемия

АД

Психоневролог, кардиохирург

Амавротическая идиотия Тея-Сакса

Задержка психомоторного развития, мышечная гипотония, слепота, ранняя смерть

АР

Детский невро­патолог

Гемофилия А

Кровотечения, гемартро зы, дефицит VIII фактора

Х-сц. Р

Гематолог

Ларсена синдром

Множественные врожденные вывихи, необычное лицо, скелетные аномалия

АД и АР

Ортопед

Марфана синдром

Высокий рост, арахнодактидия, подвывих хрусталика, аневризма аорты

АД

Кардиохирург, офтальмолог

Мышечная дистрофия Дюшенна

Мышечная слабость, псевдогипертрофия икроножных мышц, прогрессирующее течение

Х-сц. Р

Невропатолог

Нейрофиброматоз (болезнь Реклингаузена)

Пигментные пятна, множественные нейрофибромы, глиома зрительного нерва

АД

Невролог, дерматолог

Остеогенез несовершенный

Повышенная ломкость костей, голубые склеры, отосклерозы

АД и АР

Хирург, отоляринголог

Рассела-Сильвера синдром

Отставание в росте, специфическое лицо, асимметрия скелета, нарушение полового развития

АД

Эндокринолог

Рубинштейна-Тейби синдром

Прогрессирующая умственная отсталость, широкие ногтевые фаланги первых пальцев кистей и стоп, характерное лицо

АД

Психоневролог

Ушера синдром

Врожденная нейросенсорная глухота, пигментный ретинит

АР

Сурдолог, отоляринголог, офтальмолог

Приложение2

Примеры записи кариотипов


Фенотип

Кариотип

Нормальный мужчина

46, ХУ

Нормальная женщина

46, XX

Мужчина с синдромом Дауна, простая трисомия 21

47, ХУ,+21

Нормальный мужчина, носитель

45, XY, t(14q; 21q)

Робертсоновской транслокации (например, отец, ребенка с транслокационной формой синдрома Дауна

Девочка с синдромом Патау, простая трисомия 13

47, XX, +13

Мальчик с синдромом Эдвардса, простая трисомия 18

47, XY, +18

Девочка с синдром «крика кошки» (делеция короткого плеча хромосомы 5

46, XX, 5р- или

46, XX, del(5р)


Девочка с пороками развития (делеция длинного плеча хромосомы 18)

46, XX, 18q- или

46, XX, del(18я)


Мужчина с хроническим миелолейкозом

46, XY, t(9q34;22qll)*

Синдром Тернера (моносомия Х-хромосомы)

46, ХХ/47,ХХХ

Нормальная женщина (мозаичность по числу Х-хромосома

47, XXY

Мужчина с синдром Клайнфельтера

46, XX, inv(7)(pl4q25)

Нормальная девочка (перицентрическая инверсия хромосомы 7)

47,XYY

Нормальный мужчина с полисемией Y

46, X, i(Xq)

Девочка с нарушенным строением гениталий (изохромосома по длинному плечу Х-хромосомы)

Ильяшенко Любовь Дмитриевна

5.1. НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ НОЗОЛОГИЧЕСКИЕ ФОРМЫ

Возможности новых технологий, а именно молекулярной диагностики, определять предрасположенность к заболеваниям на молекулярно-генетическом уровне резко усилили интерес к генетике наиболее распространенных наследственных заболеваний, приводящих к гибели и инвалидности человека. Это группа мультифактериальных заболеваний, характер наследования которых не может быть объяснен менделевскими законами, законами моногенного наследования (табл. 5.1).

Таблица 5.1. Частота широко распространенных заболеваний мультифакториальной природы

5.2. ОБЩИЕ И ЧАСТНЫЕ МЕХАНИЗМЫ РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ПРЕДРАСПОЛОЖЕННОСТИ

Мультифакториальные болезни с наследованием предрасположенности были выделены из группы генных болезней благодаря широким генетико-эпидемиологическим исследованиям в разных популяциях (клинико-генеалогическим, близнецовым, популяционно-статистическим).

В отличие от моногенных болезней, обусловленных одной единственной мутацией, для мультифакториальных заболеваний характерно наследование предрасположенности, зависящей от значительного числа генов с суммарным (аддитивным) эффектом (генетическая компонента) и от факторов внешней среды (средовая компонента) (Фолкнер, 1965).

Генетические факторы (наследственная компонента), представляющие полигенные системы и несущие информацию о предрасположенности, могут быть в виде двух вариантов:

С пороговым действием;

Без порогового действия.

Полигенные системы предрасположенности без порогового действия предполагают, когда результат действия увеличивается количественно при накоплении патологических генов.

Для реализации полигенной системы предрасположенности с пороговым эффектом в болезнь (утрату ресурсов и функций органов и систем организма) обязательно наличие неблагоприятных факторов окружающей среды, психосоциальных, охарактеризованных клиницистами как «средовые факторы риска» (средовая компонента). Мультифакториальные заболевания возникают и прогрессируют при условии, если суммарный эффект от взаимодействия генетических и средовых факторов (компонент) предрасположенности превышает пороговое значение подверженности. Положение порога на нормальной кривой предрасположенности к заболеванию определяется частотой заболевания в популяции.

Генетическая компонента мультифакториальных заболеваний может быть обусловлена суммарным (аддитивным) действием специфических комбинаций аллелей нескольких генов с незначительным влиянием каждого, либо один ген является главным, а остальные будут иметь модифицирующее влияние. Средовая компонента также

Рис. 5.1. Гипотетические кривые предрасположенности к мультифакториальному заболеванию в популяции и у родственников пробандов. По оси абсцисс - степень предрасположенности (увеличивается справа налево), по оси ординат - число лиц. Часть серым цветом - больные

имеет сложный характер и представляется в виде нескольких компонентов, таких как систематические средовые факторы и случайные.

Сложность генетических и средовых компонент предрасположенности к мультифакториальным заболеваниям, а также сложность их взаимодействия проявляется прежде всего в выраженном клиническом полимофизме этой группы заболеваний, а именно:

Сроки начала;

Полнота и степень выраженности симптомов;

Характер, тяжесть, продолжительность течения;

Толерантность к лечению;

Выход из болезни (выздоровление, инвалидность, смерть). Клиническое многообразие мультифакториальных заболеваний

можно условно разделить на следующие варианты:

Врожденные пороки развития (ВПР);

Системные поражения с хроническим прогрессирующим характером течения;

А также возможные их сочетания.

Соотносительная роль генетических и средовых факторов (компонент) различна как для конкретной патологии, так и для каждого индивида. Величина предрасположенности может быть различна для индивидов мужского и женского пола, разных конституциональных типов, биохимических, иммунологических характеристик. Например, по ишемической болезни сердца (ИБС) группу риска составляют лица мужского пола гипер- и нормостеники, с коронарным типом личности, повышенным содержанием холестерина липопротеидов низкой плотности, пониженным холестерина липопротеидов высокой плотности, высоким уровнем апоВ, липопротеина L, фибриногена плазмы и гомоцистеина. Но для реализации предложенного генотипа необходимо определенное временное воздействие средовых факторов, таких как курение, высококалорийное питание с высоким содержанием животных жиров, низким растительных жиров, определенный способ приготовления пищи, низкая физическая нагрузка, хронический стресс и др.

При мультифакториальном характере заболевания ожидается уменьшение частоты заболевания с уменьшением степени родства (третьей по сравнению со второй и второй по сравнению с первой).

Частота заболевания будет выше среди родственников больных с более тяжелыми клиническими вариантами данного заболевания, так как степень предрасположенности этих больных должна быть больше, т.е. кривая предрасположенности расположена дальше за порогом.

В то же время несмотря на то что человек глубоко индивидуален по биологическим и психосоциальным факторам, число вариаций ключевых биохимических реакций, важных для гомеостаза, сравнительно ограничено прежде всего генетической конституцией семьи («семейным генофондом»). Исходя из этого анализ модели полигенного наследования предрасположенности показывает, что вероятность мультифакториальных заболеваний среди родственников больных выше, чем в популяции (табл. 5.2). Кривая предрасположенности к заболеванию у родственников имеет характер нормального распределения в популяции, в то же время предрасположенность к заболеванию у родственников больного выше, чем в среднем в популяции, и кривая их предрасположенности сдвинута вправо по сравнению с нормальным распределением (рис. 5.1). Причем она коррелирует с увеличением как числа больных родственников в семье и степенью их родства, так и с тяжестью заболевания родственников.

Таблица 5.2. Увеличение риска иметь больное потомство среди родственников больных по сравнению с общей популяцией

Доля идентичных генов у родственников в зависимости от степени родства составляет:

У родственников I степени родства (родители, сибсы, дети) - 1/2

У родственников II степени родства (дяди/тети, бабушки/ дедушки, внуки/внучки, полусибсы, племянницы/племянники)-1/4 у родственников III степени родства (двоюродные сибсы, пра- дедушки/прабабушки, правнуки/правнучки) - 1/8

Мультифакториальные болезни при всем их разнообразии характеризуют следующие общие черты:

Высокая частота популяции;

Несоответствие наследования простым менделевским моделям;

Выраженная внутригенная и межгенная генетическая гетерогенность;

Клинический полиморфизм;

Антиципация - утяжеление клиники в семье по поколениям (как за счет средовой, так и наследственной компонент).

Таблица 5.3. Повышение (%) риска иметь следующего больного ребенка с увеличением числа больных членов семьи

5.3. ФАКТОРЫ И ПРИНЦИПЫ ВЫЯВЛЕНИЯ ЛИЦ С ПОВЫШЕННЫМ РИСКОМ РАЗВИТИЯ БОЛЕЗНЕЙ С НАСЛЕДСТВЕННЫМ ПРЕДРАСПОЛОЖЕНИЕМ

С использованием мультифакториальной модели наследования в 60-70-е годы ХХ в. были получены оценки коэффициентов наследуемости многих хронических заболеваний, что позволило получать оценки повторного риска возникновения заболевания в семьях пробанда для родственников разной степени родства с помощью специальных компьютерных программ.

В России таблицы повторного риска для самых различных семейных ситуаций созданы для многих мультифакториальных заболеваний (сахарного диабета, ишемической болезни сердца, псориаза, расщелины губы/нёба и др.).

В последующие годы изучение роли наследственности в этиопатогенезе мультифакториальных заболеваний характеризовалось клинико-генетической направленностью. Это позволило исходя из генетической гетерогенности хронических заболеваний выделить в пределах традиционных форм заболеваний ряд редких моногенных форм. Например, из ИБС выделена семейная гиперхолестеринемия, обусловленная дефектом рецепторов липопротеинов низкой плотности (мутации в гене рецепторов ЛПНП), из диабета взрослых - моногенные инсулиннезависимые формы, у молодых МОДИ 1-6, хронического панкреатита - семейный панкреатит (табл. 5.5).

Новые возможности в изучении генетики мультифакториальных заболеваний появились в результате успешной реализации программы «Геном человека». На основе идентификации генов предрасположенности, анализа их взаимодействия в реализации общих метаболических путей и систем возможен переход к этиопатогенетическому лечению этой группы заболеваний их профилактики.

В решении этой труднейшей проблемы наблюдается переход от анализа отдельного гена к анализу большого числа генов среди семейств генов, включенных в общие метаболические пути и системы. От этиологии (специфической мутации) к патогенезу (механизму), от изучения действия гена к познанию регуляции действий гена.

Именно возможности новых технологий, в том числе молекулярной диагностики, определять предрасположенность к заболеваниям на молекулярно-генетическом уровне (в доклинической стадии) обеспечит возможность раннего и рационального лечения заболевания и его профилактики.

Таблица 5.4. Риск развития ишемической болезни сердца (ИБС) у мужчин в зависимости от наличия ИБС у родственников I степени родства

Возраст (годы)

Число здоровых сибсов

Пораженные родители

Пораженные сибсы

Значение характеристик пациента как молекулярно-генетических, так и нервно-психических, особенности питания, физических и профессиональных нагрузок, требуют нового осмысления клинико-генеалогических исследований семьи. Именно клиникогенеалогические исследования (составление родословной на базе расширенного анамнеза семьи индивида - пробанда) в сочетании с современными методами исследования (инструментальными, компьютерными, лабораторными, в том числе молекулярно-генетическими) здоровья каждого индивида будет способствовать развитию пациенториентированной модели диагностики, лечения, профилактики мультифакториальных заболеваний, широко распространенных в популяции человека.

5.4. ЭКОГЕНЕТИЧЕСКИЕ БОЛЕЗНИ

Экогенетические реакции, или болезни, представляют собой патологические состояния, возникающие как результат проявления конкретных аллелей гена или изменения экспрессии при влиянии на организм определенных факторов среды.

В процессе эволюции человека среда его обитания постоянно менялась (климат, пища, жилище, одежда), что способствовало формированию биологической природы современного человека как за счет изменения генотипов (мутаций), так и широкой нормы реакции. Оба этих процесса (мутационный, а также широкий балансированный полиморфизм) приводят к изменению темпов изменчивости как на индивидуальном, так и популяционном уровнях. Под действием отбора в окружающей среде выживают и адаптируются популяции в зависимости от их генотипов, формируя биологически-стабильный вид, для которого характерно постоянное равновесие между изменчивостью генотипов и отбором. Биологическая природа человека формировалась в течение миллионов лет, в результате современный человек достаточно хорошо приспособлен к своей среде обитания.

В то же время для современного периода эволюции характерны стремительный темп и огромный объем изменений окружающей среды. Повысился радиационный уровень, изменились среда обитания (отходы производства, транспорта, масштабная циркуляция вирусов и микроорганизмов), а также объем и характер питания (пищевые добавки, пестициды, генетически модифицированные

Таблица 5.5. Редкие моногенные формы, выделенные из группы мультифакториальных заболеваний

продукты). Человек в процессе эволюции не соприкасался с многими современными экогенетическими факторами, соответственно на действие их не было отбора. Под влиянием экогенетических факторов у современного человека могут появляться патологические реакции - экогенетические болезни.

Предметом экогенетики человека является изучение индивидуальных генотипических особенностей метаболизма химических веществ, реакций на физические факторы, биологические агенты, обусловленные многочисленными вариантами ферментных систем, транспортных белков, антигенов и рецепторов клеток человека. Экогенетика изучает варианты ответов организма разных людей на воздействие факторов окружающей среды, различия в их адаптации.

Экогенетические болезни могут быть обусловлены редкими мутантными аллелями генов или полиморфными системами, определяющими количественные варианты ответа, т.е. могут контролироваться одним геном или несколькими. Соответственно характер распределения данных реакций в потомстве будет соответствовать моноили полигенным моделям наследования. В то же время для проявления патологического ответа необходимо воздействие конкретного средового фактора на данный индивид.

Четко установлена роль полиморфных генных локусов, участвующих как прямо, так и опосредованно в биотрансформации (детоксикации) чужеродных веществ (цитохром Р450, N-ацетилтрансферазы, холинэстеразы, пароксоназы сыворотки, лактазы, глюкоза-6-фос- фатдегидрогеназы, ингибиторов протеаз) в патологических экогенетических реакциях.

Для изучения механизма экогенетических реакций используются как генетические методы (клинико-генеалогический, близнецовый, популяционно-статистический, методы экспериментальной генетики, молекулярно-генетические методы исследования), так и биохимические, токсикологические и фармакологические.

Условно факторы окружающей среды можно разделить на физические, химические и биологические.

Физические факторы

Хорошо известна индивидуальная чувствительность организма человека к теплу, холоду, солнечному свету. Четкие расовые различия установлены в реакции на холодовой фактор. Представители негроидной расы более чувствительны к холоду, чем европеоидной,

возможно, за счет разного уровня теплопродукции и теплоотдачи. Люди с наследственной парамиотией повышенно чувствительны к холоду, сырая, прохладная погода с температурой 10-12 °С вызывает у них тонические спазмы мышц, проходящие под действием тепла.

Имеют место индивидуальные и расовые различия в реакциях на ультрафиолетовые излучения.

Пигментная ксеродерма (1:5-500 тыс.) аутосомно-рецессивного типа наследования является примером высокой чувствительности кожи человека к действию солнечного света. Для клиники заболеваний характерно появление ожогов с последующим их изъязвлением и образованием новообразований под действием солнечного света, развитие катаракты, неврологические нарушения, умственная отсталость. Молекулярно-генетический механизм заключается в мутациях в нескольких генных локусах (не менее 4 типов) Р53, PRb, Р161NК4а, PARF, контролирующих процессы репарации ДНК (экза- и эндонуклиаз, полимеразы, лигазы), что приводит к нарушению процессов репарации ДНК до нормы после повреждения их ультрафиолетовыми лучами. Эти гены клонированы, и возможна преклиническая и дородовая диагностика.

Наследственно детерминированные различия в репарирующих системах могут иметь существенное значение также в проявлениях чувствительности к ионизирующим излучениям.

Химические факторы

Огромное количество новых химических веществ появилось в продуктах и отходах производства, транспорта, в виде лекарственных средств, пищевых добавок и др. В последнее столетие человечество столкнулось с глобальной проблемой загрязнения атмосферы газообразными отходами огромного числа промышленных производств, выхлопными газами транспорта. Образующиеся пылевые частицы, содержащие множество химических соединений, попадают в организм как через легкие, так и слизистые оболочки, кожу и представляют угрозу для здоровья человека, особенно если он занят на соответствующем производстве.

Установлено значение генетической конституции организма человека в развитии экогенетических реакций на загрязнение атмосферы. Примером может служить недостаточность фермента α-антитрипсина. Фермент α-антитрипсин является мощным антипротеиназным ферментом, участвующим в дезактивации эластаз, выделяемых мак-

рофагами и полиморфноядерными лейкоцитами. Наследственный дефицит этого фермента приводит к разрушению межальвеолярных перегородок легких и вследствие этого происходит слияние альвеол в более крупные полости, т.е. к развитию панацинорной энфиземы и хроническому поражению печени. Синтез этого фермента кодируется геном расположенным в 14-й хромосоме. Отмечается значительный популяционный полиморфизм этого белка (около 70 аллелей), а также вариабельность. Наиболее распространенным вариантом является аллель М (80%). Неактивность белка связана с аллелем Z (рецессивный вариант). Фермент, синтезируемый в этом случае, отличается от ММ типа заменой глутаминовой кислоты на лизин в 342-й позиции, что приводит к изменению конформации молекулы белка. В результате этого ZZ форма не может экскретировать фермент печеночными клетками и накапливать в виде эозинофильных включений. Гомозиготы (генотип ZZ - частота 0,05% у европейцев) склонны к развитию хронических заболеваний легких, в том числе энфиземы. Эмфизема легких у этих лиц развивается после 30-40 лет чаще и для нее характерно злокачественное течение. Запыленность воздуха и курение значительно увеличивают риск развития заболевания у этих лиц (в 30 раз). Методы определения недостаточности α-антитрипсина в настоящее время разработаны и должны применяться при профессиональных отборах на соответствующих производствах.

Примеры индивидуальной непереносимости того или иного продукта известны давно, например непереносимость молока, конских бобов, некоторых злаков. Непереносимость лактозы (молока) - галактоземия проявляется в дискомфорте желудочно-кишечного тракта, диарее. Отсутствие выработки фермента лактазы в кишечнике у гомозигот приводит к не расщеплению лактозы, что является субстратом для размножения гнилостной микрофлоры в кишечнике. Мутантные формы гена лактазы встречаются с разной частотой: среди европейцев частота гомозигот составляет 5-10%, восточных народов, афроамериканцев, американских индейцев - 70-100%.

Примером непереносимости пищевых продуктов является целиакия, обусловленная непереносимостью глютена, белка злаков (пшеницы, ржи, ячменя), характеризующаяся развитием атрофии слизистой оболочки тонкой кишки и связанного с ней симптома мальабсорбции. В типичном случае целиакия манифистирует через 1,5-2 мес после введения злаковых продуктов в питание ребенка (в

8-12 мес) с последующим замедлением темпов прибавки веса ребенка, снижением аппетита, эмоциональной лабильностью. В начале заболевания глютен связывается со специфическими рецепторами эпителиоцитов, детерминированными генами HLA, в ответ на действие глютена происходит атрофия ворсинок тонкой кишки, также в процесс активно вовлекается лимфоидная ткань кишки. Предполагается аутосомно-рецессивный тип наследования, в предрасположенности к целиакии участвуют два генных локуса (6р гены GSE,CD). Распространенность предрасположенности к целиакии колеблется в широких пределах 1:500 до 1:2700 (4,6:1000 - Италия до 3,7:1000 - Швеция, 1:476 - Австрия, 1:555 - Ирландия). Крайне редко заболевание встречается в Японии, Китае, Африке. Без продуктов, содержащих глютен, эти дети развиваются нормально, т.е. наиважнейший компонент лечения - пожизненная строгая безглютеновая диета.

Недостаточность фермента глюкозо-6-фосфат - дегидрогеназы (Х-сцепленный рецессивный признак) вызывает гемолиз крови у людей, употребляющих в пищу конские бобы. При постоянном приеме этого продукта вслед за гемолизом следует хроническое поражение почек. Подобную реакцию могут вызывать также и некоторые лекарственные вещества (примахин, сульфаниламидные препараты), промышленные окислители.

Известно около 200 вариантов глюкозо-6-фосфат - дегидрогеназы, лишь некоторые из них вызывают гемолиз эритроцитов. Синтез аномальной молекулы фермента обусловлен структурными мутациями гена. Клинически различают пять форм недостаточности фермента в зависимости от его активности. К первой форме относят недостаточность фермента, который вызывает хроническую несфероцитарную гемолитическую анемию с последующим развитием спленомегалии. Во 2-4-й форме гемолитическая анемия развивается прежде всего при употреблении конских бобов. При недостаточности глюкозо-6-фосфат - дегидрогеназы в эритроцитах нарушается основная функция фермента, поддержание стабильности мембран эритроцитов от повреждающего действия кислорода, устойчивость к воздействию потенциальных окислителей.

Имеются сообщения о различии в чувствительности человека к солям тяжелых металлов (свинец, ртуть, кадмий и др.). У человека существует жесткий генетический контроль метаболизма поступающих в организм химических соединений.

Понятие о экогенетике человека, а также ее основы начали формироваться в средине 50-х годов двадцатого столетия, когда впервые обратили внимание на генетически детерминированные патологические реакции на лекарственные вещества, связанные с недостаточностью ферментов. А. Мотульски (1957) впервые предложил термин «фармакогенетика» для обозначения раздела генетики, изучающего генетический контроль метаболизма лекарств, а также наследственные болезни, возникающие или усиливающиеся при приеме определенных лекарственных веществ (Фогель Ф., 1959).

Биологические факторы

Генетическую природу иммунной системы организма, предназначенной для защиты организма от внешнего (инфекционные болезни) и внутреннего (онкологическое перерождение клетки) повреждающего действия, изучает иммуногенетика.

Иммунная система человека представляет комплекс специализированных лимфоидных органов и диссеминированных клеток. Эти структуры, возникшие в процессе эволюции человека как биологического вида, сформировали механизмы их ответных реакций, обеспечивающих распознавание чужеродных и собственных измененных антигенов (макромолекулы), удаление их из клеток, содержащих их, обеспечивая запоминание контакта с этими антигенами.

Генетическая природа иммунитета и разная степень его выраженности у индивидов является общебиологической закономерностью, обусловленной генетическим полиморфизмом реакций на действие внешних биологических факторов (вирусы, бактерии, грибки) и внутренних (онкологически перерожденные клетки).

Классическим примером генетически детерминированной устойчивости к биологическим агентам служат гемоглобинопатии (серповодноклеточная анемия, талассемии) и энзимопатии (недостаточность глюкозо-6-фосфат - дегидрогеназы). Именно устойчивость лиц с дефектом глюкозо-6-фосфат - дегидрогеназы и гемоглобинопатиями к малярийному плазмодию позволило широкому распространению соответствующих мутаций в ареалах с высокой заболеваемостью малярией (Средиземноморье, Африка).

Распространенные иммунодефицитные состояния могут быть результатом нарушения функций клеточного и гуморального иммунитетов. Они предрасполагают к соответствующим бактериальным, вирусным, грибковым типам инфекций. Хорошо известны факты

различной чувствительности людей при введении одних и тех же доз вакцин: от отсутствия реакции на иммунизацию до клинического проявления инфекции.

В широком понимании все болезни мультифакториальной природы можно рассматривать как экогенетические болезни, так как для их развития необходимо взаимодействие генов предрасположенности и средовых факторов риска. Экогенетические реакции, как и мультифакториальные болезни, являются ответом организма с определенной генетической конституцией на воздействие средовых факторов.

Таким образом, экогенетика является научной основой для обеспечения адаптивной среды для каждого человека: подбор индивидуального рациона и климата, исключение отравления лекарствами, профессиональный отбор, что исключит преждевременную смерть, инвалидизацию, дополнительную госпитализацию человека, а также сохранит его биологическое и социальное здоровье.

Это наука, которая изучает роль наследственности и изменчивости в возниконовении заболеваний человека.

Объектом является человек, имеющий наследственно обусловленную патологию.

Предметом являются все патологии и причины их возникновения.

Задачи медицинской генетики :

    Изучение наследственной изменчивости: геномных, хромосомных и генных мутаций и их роль в возникновении заболеваний человека

    Исследование механизмов развития и особенности клинических проявлений наследственно детерминированных заболеваний

    Разработка эффективных механизмов коррекции наследственных болезней

    Профилактика наследственных болезней

  1. Подходы к классификации наследственных болезней.

Классификация заболеваний человека

    Наследственные болезни

Генетический и этимологический фактор – мутации (генные и хромосомные)

Роль средовых факторов – только в выраженности, влияет на течение этих заболеваний.

Фенилкетонурия и синдром Дауна (транслокационный механизм)

    Болезни с наследственным расположением моногенного типа

Наличие мутантного гена.

Для проявления гена необходимы факторы окружающей среды

Падагра (нек.формы) и диабет

    Мультифакториальные болезни

Несколько генов в сочетании с факторами внешней среды.

Около 90% всех заболеваний человека.

    Болезни, обусловленные действием только средовых факторов

Возникают только под действием средовых факторов, на течение может влиять и генетические факторы (Травмы, ожоги т.д.)

  1. Общая характеристика генных болезней.

Генные болезни - это разнородная по клиническим проявлениям группа заболеваний, обусловленных мутациями на генном уровне.

Частота 1-2%

Особенности:

Этиологический фактор действует постоянно;

Мутантный ген стойко передается из поколения в поколение;

Патогенез генных болезней может быть обусловлен: синтезом аномального белка;

избытком продукта гена;

недостатком или отсутствием продукта;

количество продукта достаточно, но нарушена его активность.

Фенилкетонурия

Синдром Марфана

  1. Типы наследования генных болезней. Примеры.

Болезни с аутосомно-доминантным типом наследования характеризуются тем, что для их развития достаточно унаследовать мутантный аллель от одного родителя. Для большинства болезней этого типа характерны такие патологические состояния, которые не наносят серьезного ущерба здоровью человека и в большинстве случаев не влияют на его способность иметь потомство. Болезни с аутосомно-рецессивным типом наследования проявляются у лиц только в гомозиготном состоянии. Гетерозиготы фенотипически (клинически) не отличаются от здоровых лиц с двумя нормальными аллелями. Болезни с Х-сцепленным доминантным типом наследования . Особенности наследования этих болезней обусловлены тем, что у женщин имеются 2 Х-хромосомы, а у мужчин – 1 Х-хромосома. Следовательно, женщина, унаследовав от одного из родителей патологический аллель, является гетерозиготной, а мужчина – гемизиготным. Болезни с Х-сцепленным рецессивным типом наследования встречаются редко. При этом женщины практически всегда гетерозиготны, т.е. фенотипически нормальны (здоровы) и являются носителями. Больными бывают только мужчины. Характерные особенности болезней этого типа различны в зависимости от нарушения репродукции. Y-сцепленный тип наследования . Длительное время полагали, что Y-хромосома содержит только гетерохромативные участки (без генов). Новейшие исследования позволили обнаружить и локализовать ряд генов в Y-хромосоме, ген, детерминирующий развитие семенников, отвечающий за сперматогенез (фактор азооспермии), контролирующий интенсивность роста тела, конечностей и зубов и др. Оволосение ушной раковины контролируется геном, расположенным в Y-хромосоме. На этом признаке можно видеть характерные черты Y-сцепленного типа передачи. Признак передается всем мальчикам. Естественно, что патологические мутации, затрагивающие формирование семенников или сперматогенез, не могут наследоваться, потому что эти индивиды стерильны. Для митохондриальной наследственности характерны следующие признаки (необходимо помнить, что митохондрии передаются с цитоплазмой овоцитов; спермии не имеют митохондрий, поскольку цитоплазма элиминируется при созревании мужских половых клеток): болезнь передается только от матери; больны и девочки, и мальчики; больные отцы не передают болезни ни дочерям, ни сыновьям.

Моногенные болезни с наследственной предрасположенностью детерминируются также одним мутантным геном, но для их проявления требуется обязательное действие конкретного фактора внешней среды, который по отношению к данной болезни может рассматриваться как специфический. Эти заболевания относительно немногочисленны, они наследуются по законам Менделя, их профилактика и лечение достаточно разработаны и эффективны. Учитывая важную роль средовых факторов в проявлении этих заболеваний, их следует рассматривать как наследственно обусловленные патологические реакции на действие внешних факторов. Это может быть извращенное реагирование на фармакологические препараты сульфаниламиды, примахин и др., на загрязнение атмосферы полициклические углеводороды, на пищевые вещества и добавки лактозу, шоколад, алкоголь, на физические холод, ультрафиолетовые лучи и биологические вакцины, аллергены факторы.

Причины генных патологий

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов - белков. Любая мутация гена ведет к изменению структуры или количества белка.
Начало любой генной болезни связано с первичным эффектом мутантного аллеля.

Основная схема генных болезней включает ряд звеньев:
мутантный аллель > измененный первичный продукт > цепь биохимических процессов в клетке > органы > организм

В результате мутации гена на молекулярном уровне возможны следующие варианты:
синтез аномального белка

выработка избыточного количества генного продукта

отсутствие выработки первичного продукта

выработка уменьшенного количества нормального первичного продукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на клеточном уровне. При различных болезнях точкой приложения действия мутантного гена могут быть как отдельные структуры клетки - лизосомы, мембраны, митохондрии, пероксисомы, так и органы человека.

Клинические проявления генных болезней, тяжесть и скорость их развития зависят от особенностей генотипа организма, возраста больного, условий внешней среды питание, охлаждение, стрессы, переутомление и других факторов.

Особенностью генных как и вообще всех наследственных болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. Впервые гетерогенность наследственных болезней была выявлена С. Н. Давиденковым в 1934 г.

Общая частота генных болезней в популяции составляет 1-2%. Условно частоту генных болезней считают высокой, если она встречается с частотой 1 случай на 10000 новорожденных, средней – 1 на 10000 - 40000 и далее – низкой.

Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Классификация
К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследственных болезней обмена веществ.
Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний - недостаточность того или иного фермента, ответственного за синтез аминокислот.

К ним относится:
фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы

алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты

глазно-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

Нарушения обмена углеводов
галактоземия - отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы

гликогеновая болезнь - нарушение синтеза и распада гликогена.

Болезни, связанные с нарушением липидного обмена
болезнь Ниманна-Пика - снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы

болезнь Гоше - накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

Наследственные болезни пуринового и пиримидинового обмена
подагра

Синдром Леша-Найхана.

Болезни нарушения обмена соединительной ткани
синдром Марфана «паучьи

пальцы», арахнодактилия - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина

мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов.
Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1

Наследственные нарушения циркулирующих белков
гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные структурные и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции серповидноклеточная анемия. При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей талассемия.

Наследственные болезни обмена металлов
болезнь Коновалова-Вильсона и др.
Синдромы нарушения всасывания в пищеварительном тракте
муковисцидоз

непереносимость лактозы и др.
К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.
Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.
Аномалии числа хромосом
Болезни, обусловленные нарушением числа аутосом неполовых хромосом
синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики

синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года

синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.
Болезни, связанные с нарушением числа половых хромосом
Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин 45 ХО вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения микрогнатия, короткая шея и др.

полисомия по Х-хромосоме - включает трисомию кариотии 47, XXX, тетрасомию 48, ХХХХ, пентасомию 49, ХХХХХ, отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения

полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию кариотии 47, XYY, тетрасомию 48, ХYYY, пентасомию 49, ХYYYY, клинические проявления также схожи с полисомией X-хромосомы

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков 47, XXY; 48, XXYY и др., признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.
Болезни, причиной которых является полиплоидия
триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного 23 диплоидный 46 набор хромосом, то есть 69 хромосом у мужчин кариотип 69, XYY, у женщин - 69, XXX; почти всегда летальны до рождения.
Нарушения структуры хромосом

Транслокации - обменные перестройки между негомологичными хромосомами.
Делеции - потери участка хромосомы. Например, синдром «кошачьего крика» связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия аномально уменьшенная голова.
Инверсии - повороты участка хромосомы на 180 градусов.
Дупликации - удвоения участка хромосомы.
Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах.
Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25 % приходится на аутосомные трисомии, 46 % - на патологию половых хромосом. Структурные перестройки составляют 10,4 %. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции.

Полигенные болезни ранее - заболевания с наследственной предрасположенностью обусловлены как наследственными факторами, так и, в значительной степени, факторами внешней среды. Кроме того, они связаны с действием многих генов, поэтому их называют также мультифакториальными. К наиболее часто встречающимся мультифакториальным болезням относятся: ревматоидный артрит, ишемическая болезнь сердца, гипертоническая и язвенная болезни, цирроз печени, сахарный диабет, бронхиальная астма, псориаз, шизофрения и др.

Полигенные заболевания тесно связаны с врождёнными дефектами метаболизма, часть из которых может проявляться в виде метаболических заболеваний.

Распространение полигенных наследственных заболеваний
Эт группа болезней в настоящее время составляет 92% от общего числа наследственных патологий человека. С возрастом частота заболеваний возрастает. В детском возрасте процент больных составляет не менее 10 %, а в пожилом - 25-30 %.
Распространение мультифакториальных болезней в разных популяциях человека может значительно варьировать, что связано с различием генетических и средовых факторов. В результате генетических процессов, происходящих в человеческих популяциях отбор, мутации, миграции, дрейф генов, частота генов, определяющих наследственную предрасположенность, может возрастать или уменьшаться вплоть до полной их элиминации.
Особенности полигенных болезней
Клиническая картина и тяжесть течения мультифакториальных болезней человека в зависимости от пола и возраста очень различны. Вместе с тем, при всем их разнообразии, выделяют следующие общие особенности:
Высокая частота заболеваний в популяции. Так, шизофренией болеют около 1% населения, сахарным диабетом - 5%, аллергическими заболеваниями - более 10%, гипертонией - около 30%.
Клинический полиморфизм заболеваний варьирует от скрытых субклинических форм до ярко выраженных проявлений.
Особенности наследования заболеваний не соответствуют менделевским закономерностям.
Степень проявления болезни зависит от пола и возраста больного, интенсивности работы его эндокринной системы, неблагоприятных факторов внешней и внутренней среды, например, нерационального питания и др.
Генетическое прогнозирование полигенных болезней
Генетический прогноз при мультифакториальных заболеваниях зависит от следующих факторов:
чем ниже частота болезни в популяции, тем выше риск для родственников пробанда

чем сильнее степень выраженности болезни у пробанда, тем больше риск развития болезни у его родственников

риск для родственников пробанда зависит от степени родства с пораженным членом семьи

риск для родственников будет выше, если пробанд относится к менее поражаемому полу.
Полигенная природа болезней с наследственной предрасположенностью подтверждается с помощью генеалогического, близнецового и популяционно-статистического методов. Достаточно объективен и чувствителен близнецовый метод. С помощью близнецового метода показана наследственная предрасположенность к некоторым инфекционным заболеваниям туберкулез, полиомиелит и многим распространенным болезням ишемическая болезнь сердца, ревматоидный артрит, сахарный диабет, язвенная болезнь, шизофрения и др..